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Zusammenfassung

Diese Masterarbeit verallgemeinert ein Result über die Minimierer des Busemann–Hausdorff Flächen-

funktionals auf beliebige Kodimension. Im Jahr 2014 wurde das Plateau Problem im Finslerraum

(R3, F ) von Overath und von der Mosel gelöst, [OvdM14OvdM14]. Die vorliegende Arbeit zeigt, dass die

Beweistechnik von Overath und von der Mosel erweitert werden kann, um die Existenz von flächen-

minimierenden Oberflächen im Finslerraum (Rn, F ) nachzuweisen, falls die Finslermetrik reversibel

ist. Um dieses Ziel zu erreichen, wird Burago and Ivanov’s Arbeit [BI12BI12] über die Konvexität der

zwei-dimensionalen Busemann–Hausdorff Flächendichte ausführlich diskutiert. Abschließend wird ein

Zusammenhang zwischen dem Busemann–Hausdorff Flächenintegranden und der Theorie über Cartan

Integranden aufgezeigt.
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Abstract

This thesis generalises a result on minimisers of the Busemann–Hausdorff area functional to arbitrary

codimension. Recently, Overath and von der Mosel solved the Plateau problem for three-dimensional

Finsler space (R3, F ), [OvdM14OvdM14]. The present work shows that their proof technique can be extended

to show the existence of area minimising surfaces in n-dimensional Finsler space (Rn, F ) for reversible

Finsler metrics. To achieve this goal, this thesis extensively discusses Burago and Ivanov’s work [BI12BI12]

on the convexity of the two-dimensional Busemann–Hausdorff area density. Finally, a connection

of the Busemann–Hausdorff area integrand and the well-investigated theory of Cartan integrands is

illustrated.
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Introduction

In this thesis we investigate the Plateau problem in n-dimensional Finsler space for reversible Finsler

metrics F .

The Plateau problem (named in honour of the Belgian physicist J.A.F. Plateau (1801–1883)) is one

example of a boundary value problem for minimal surfaces. In 1873, Plateau conducted a number of

soap film experiments during which he noted that every single closed wire, however complicated its

geometric form may be, bounds at least one soap film. By Johan Bernoulli’s principle of virtual work,

soap films in stable equilibrium correspond to surfaces of minimal surface area. Mathematically, a

closed wire can be modelled by a closed rectifiable Jordan curve. In addition, one can prove that

surfaces of minimal area are minimal surfaces (surfaces whose mean curvature vanishes). The question

which the Plateau problem poses is the following (see [DHKW92DHKW92, Chapter 4, pp. 221-226]):

Given a closed rectifiable Jordan curve Γ, is there a minimal surface spanned by Γ?

The first question one needs to answer is how to “measure” surface area. This depends on the geometric

setting one studies the surfaces in. For the purpose of this thesis, we consider surfaces immersed into

a Finsler space and consequently the notion of Busemann–Hausdorff area (or Finsler area) introduced

by Busemann in [Bus47Bus47] (see Section 2.12.1). Secondly, one needs to discuss the class of permitted

surfaces. For example, we do not consider fractal surfaces. Then we want to solve the variational

problem

minimise areaFB(X)

over a class of admissible surfaces X ∈ C(Γ) (which will be defined in Section 3.13.1).

In [OvdM14OvdM14], Overath and von der Mosel showed the existence of Finsler area minimisers in

codimension one and established higher regularity of solutions. However, Overath and von der

Mosel considered a more general class of Finsler metrics whose ”m-harmonic symmetrisation” is

a Finsler metric as well. In their work they applied the theory of Cartan functionals to Finsler

area. For this, assume X : M→ Rn is a smooth immersion of a smooth m-manifold into Rn and
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I ∈ C0(Rn × RN ), N =
(
n
m

)
is positively homogeneous in its second argument, that is,

I(x, ty) = tI(x, y)

for all (x, y) ∈ Rn × RN and t > 0. Therefore, the m-form

i(p) = I

(
X(p), dXp

(
∂

∂u1

∣∣∣∣
p

)
∧ dXp

(
∂

∂u2

∣∣∣∣
p

)
∧ · · · ∧ dXp

(
∂

∂um

∣∣∣∣
p

))
.

for a local coordinate chart (uα)mα=1 onM is globally well-defined. Then

I(X) =

∫
p∈M

i(p),

is called Cartan functional and I is the corresponding Cartan integrand. A broad range of results in

the theory of Cartan functionals has been established. Hildebrandt and von der Mosel, in particular,

showed the existence and regularity of Cartan minimisers in a certain class of admissible surfaces

([HvdM03bHvdM03b, HvdM03cHvdM03c]). Their result holds for Cartan integrands which are positive definite, that is,

M1|z| ≤ I(x, z) ≤M2|z|

for all (x, z) ∈ Rn ×GCm(Rn) and semi-elliptic, that is,

I(x, tz1 + (1− t)z2) ≤ tI(x, z1) + (1− t)I(x, z2)

for all x ∈ Ω, z1, z2 ∈ RN and t ∈ [0, 1] (see Section 3.23.2).

In codimension one (n = m + 1), Overath and von der Mosel identified the two-dimensional

Busemann–Hausdorff area integrand as a positive definite, semi-elliptic Cartan integrand so that the

existence result for Cartan minimisers yields a solution to the Plateau problem in Finsler space. The

crucial part for the positive definiteness (see Theorem 3.3.53.3.5) is a representation of the Busemann–

Hausdorff area integrand as a spherical integral (see Theorem 3.3.23.3.2) found by Overath in [Ove13Ove13]

which holds in arbitrary codimension. The semi-ellipticity of the Busemann–Hausdorff area integrand

for reversible Finsler metrics has been proved by Busemann in [Bus49Bus49] – but only in codimension one.

Recently, Burago and Ivanov [BI12BI12] established this semi-ellipticity in arbitrary codimension (see

Theorem 2.2.22.2.2). Their work uses concepts from multilinear algebra, convex geometry and convex

analysis. Essentially, they showed that the convexity condition for the Busemann–Hausdorff area

integrand is equivalent to the existence of so-called calibrators which support the area integrand “in

2



every direction” (see Lemma 2.2.42.2.4). Subsequently, they reformulate the notion of a calibrator into an

inequality regarding the Euclidean area of centrally symmetric two-dimensional polygons on the plane

(see inequality (2.2.222.2.22)). This inequality is proved with elementary results from convex geometry and

convex analysis (see Theorem 2.2.72.2.7).

Therefore, in the last chapter we combine Overath and von der Mosel’s proof technique with the

result found by Burago and Ivanov and solve the Plateau problem in Finsler space in arbitrary

codimension for a reversible Finsler metric.

The thesis is outlined as follows. Chapter 11 begins with basic definitions and results on multilinear

algebra, convex and differential geometry. These results are grouped into sections according to the

respective topics. In particular, we introduce in Section 1.11.1 the algebraic notions of the tensor product

and exterior power of a vector space. Subsequently, the Plücker embedding and some properties

are presented. The section concludes with a Riesz-type isomorphism that arises in an inner product

space. In Section 1.21.2 we illustrate basic principles of convex sets and polytopes such as the polarity

of polytopes and polyhedral sets and the support function of a convex set. The next subsections

cover properties of the mixed volumes of convex sets and we develop a well-known explicit formula

for a certain mixed volume. Finally, a maximum principle for convex functions over convex domains

is presented. Section 1.31.3 introduces basic notions of differential geometry and serves as a reference

section for the subsequent chapters.

Chapter 22 covers an extensive treatment of Burago and Ivanov’s work [BI12BI12] on the convexity of

the two-dimensional Busemann–Hausdorff area density. First, we formally introduce the Busemann–

Hausdorff definition of volume on a Finsler manifold. This extends to the notion of the Finsler area

functional areaFΩ of immersed m-dimensional submanifolds. Secondly, we define the convexity of an

area density and present Burago and Ivanov’s reformulation thereof. Using the concepts introduced in

Chapter 11, we prove the central result on polygons described above (see Theorem 2.2.72.2.7).

In Chapter 33 we formulate the Plateau problem in Finsler space for arbitrary codimension (see

Theorem 3.1.13.1.1). Subsequently, we give basic notions and results of Cartan functional theory. In

Section 3.33.3 we identify the Busemann–Hausdorff area integrand as a Cartan integrand which leads to

a solution of the Plateau problem.
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Chapter 1

Preliminaries of multilinear algebra, convex geometry

and differential geometry

In this chapter we want to give an introduction to different concepts that are needed in the subsequent

chapters. The focus here lies on results of multilinear algebra and convex geometry, as they are used

extensively in Burago and Ivanov’s work on the convexity of the two-dimensional Busemann–Hausdorff

area density [BI12BI12]. We present their work in greater detail in the next chapter. Differential geometric

concepts are stated merely for reference and we omit most of the proofs in the respective section.

1.1 Multilinear algebra

This section aims to introduce some results of multilinear algebra. We begin by algebraically defining

the tensor product of a finite number of vector spaces. This leads to elementary results for the exterior

power
∧m

(V ) of a vector space. In addition, the Plücker embedding arises, relating m-dimensional

subspaces to a certain subset of the mth exterior power. By imposing an inner product structure

on the vector space V , we introduce the notion of a volume form and prove a Riesz-type theorem.

The results and notation in this section have mainly been borrowed from the treatise of Lee [Lee13Lee13,

Chapter 12]. The section on the Plücker embedding is based on the book of Harris [Har95Har95].

Some words to clarify notation. The set N is the set of natural numbers {1, 2, 3, . . .} and R is the

set of real numbers. All vector spaces are to be considered over the field of real numbers. In some

parts, we commit the mild sin of identifying a linear map with its matrix representation with respect

to a basis. In addition, we usually write Lv instead of L(v) for the image of a vector v under a linear

map L. A matrix A ∈ Rm×n is represented as (Aij) = (Aij)i,j = (Aij)i=1,...,m,j=1,...,n or (Aij)
m
i,j=1 if

m = n. Therein i is the row and j the column index.
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Chapter 1 Preliminaries of multilinear algebra, convex geometry and differential geometry

1.1.1 The tensor product

Suppose V1, V2, . . . , Vm are finite-dimensional F-vector spaces of dimensions n1, n2, . . . , nm, respectively.

Recall that the cartesian product V1 × V2 × · · · × Vm turns into a vector space if it is endowed with

component-wise addition and scalar multiplication given by a(v1, v2, . . . , vm) = (av1, av2, . . . , avm).

The cartesian product is of dimension n1 + n2 + . . .+ nm. Our aim is to construct a new vector space

V1⊗V2⊗· · ·⊗Vm of (finite) dimension n1 ·n2 · . . . ·nm which consists of linear combinations of objects

of the form v1 ⊗ v2 ⊗ · · · ⊗ vm where vi ∈ Vi and in such a manner that v1 ⊗ v2 ⊗ · · · ⊗ vm depends

linearly on each vi separately (as opposed to the cartesian product where the scalar multiplication

is not homogeneous in each entry separately). A natural algebraic way to achieve this goal is to

construct this new vector space as a certain quotient vector space. We begin by forming the free

vector space with basis V1 × V2 × · · · × Vm, that is, define the set of formal sums

F(N) :=

{∑
n∈N

ann

∣∣∣∣∣ an ∈ K, an = 0 for all but finitely many n ∈ N

}

where N := V1 × V2 × · · · × Vm. We can define an addition and a scalar multiplication on F(N) by

(∑
n∈N

ann

)
+

(∑
n∈N

bnn

)
:=
∑
n∈N

(an + bn)n,

α

(∑
n∈N

bnn

)
:=
∑
n∈N

(αan)n.

This turns F(N) into a vector space over the base field F of the vector spaces Vi. Take note that by

definition any element of N is a basis element. In fact, the free vector space above is of dimension∏m
i=1 #F · dim(Vi) = (#F)

m ·
∏m
i=1 dim(Vi). Here #S denotes the cardinality of a set S. Therefore,

when F = R this space is far too large for our intended purpose of creating a vector space of finite

dimension n1 · n2 · . . . · nm. For this reason, we proceed by factoring out the linearity relations we are

looking for. Consider the subspace U of F(N) given by

span
{

(v1, . . . , avi + wi, . . . , vm)− a(v1, . . . , vi, . . . , vm)− (v1, . . . , wi, . . . , vm)
∣∣a ∈ R, vi, wi ∈ Vi

}
.

The tensor product of V1, V2, . . . , Vm, denoted as V1 ⊗ V2 ⊗ · · · ⊗ Vm, is defined as the quotient

space

V1 ⊗ V2 ⊗ · · · ⊗ Vm := F(V1 × V2 × · · · × Vm)/U.

6



1.1 Multilinear algebra

The equivalence class of an element (v1, v2, . . . , vm) in V1 ⊗ V2 ⊗ · · · ⊗ Vm will be denoted by

v1 ⊗ v2 ⊗ · · · ⊗ vm := (v1, v2, . . . , vm) + U.

and is called the tensor product of v1, v2, . . . , vm. By construction, the tensor product satisfies

our linearity requirements

v1 ⊗ · · · ⊗ (avi + wi)⊗ · · · ⊗ vm = a(v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vm) + v1 ⊗ · · · ⊗ wi ⊗ · · · ⊗ vm

and any element of V1 ⊗ V2 ⊗ · · · ⊗ Vm can be written as a linear combination of elements of the form

v1 ⊗ v2 ⊗ · · · ⊗ vm where vi ∈ Vi. As a real quotient space the tensor product is itself a real vector

space (see e.g. [DF04DF04, Theorem 7, p. 412]).

A map F : V1 × V2 × · · · × Vm → X into a vector space X is called multilinear if it is linear as a

function of each entry separately, that is, if for each i = 1, . . . ,m

F (v1, . . . , avi + wi, . . . , vm) = aF (v1, . . . , vi, . . . , vm) + F (v1, . . . , wi, . . . , vm).

The tensor product satisfies the following universal property. A proof can be found in [Lee13Lee13,

Proposition 12.7, p. 309] but it will be omitted here.

Proposition 1.1.1 (Universal Property of the Tensor Product Space)

Let V1, V2, . . . , Vm be finite-dimensional real vector spaces. If A : V1 × V2 × · · · × Vm → X is a

multilinear map into a vector space X, then there is a unique linear map Ã : V1 ⊗ V2 ⊗ · · · ⊗ Vm → X

such that A = Ã ◦ π, where π is the projection map given by π(v1, v2, . . . , vm) := v1 ⊗ v2 ⊗ · · · ⊗ vm.

That is, the following diagram commutes:

V1 × V2 × · · · × Vm

V1 ⊗ V2 ⊗ · · · ⊗ Vm

X

π

A

Ã

The strength of the universal property and the reason for its name lie in the fact that it uniquely

determines the tensor product up to unique isomorphism. Some texts also define a tensor product by

its universal property and subsequently use the construction shown above to prove the existence of a

tensor product (which by the following uniqueness result can then be called the tensor product).

7



Chapter 1 Preliminaries of multilinear algebra, convex geometry and differential geometry

Proposition 1.1.2

Let V1, V2, . . . , Vm be finite-dimensional real vector spaces and suppose π′ : V1 × V2 × . . .× Vm → Z is

a multilinear map into a vector space Z with the following universal property.

For any multilinear map B : V1 × V2 × . . .× Vm → Y there is a unique linear map B̃ : Z → Y such

that B = B̃ ◦ π′. That is, the following diagram commutes:

V1 × V2 × · · · × Vm

Z

Y

π′

B

B̃

Then there is a unique isomorphism Φ: V1 ⊗ V2 ⊗ · · · ⊗ Vm → Z such that π′ = Φ ◦ π where

π : V1 × V2 × · · · × Vm → V1 ⊗ V2 ⊗ · · · ⊗ Vm is the canonical projection.

Remark:

The preceding proposition shows that the details of the construction of the tensor product space are

irrelevant as long as the resulting space – in the notation of Proposition 1.1.21.1.2 this is Z – satisfies the

universal property.

Proof of Proposition 1.1.21.1.2: The proof will be given by diagram chasing. First, we use Propos-

ition 1.1.11.1.1 for X = Z and A = π′. This gives a unique linear map Ã : V1 ⊗ V2 ⊗ · · · ⊗ Vm → Z

such that Ã ◦ π = π′. Similarly, the universal property for Z from the hypothesis applied to the

vector space Y = V1 ⊗ V2 ⊗ · · · ⊗ Vm and the multilinear map B = π yields a unique linear map

B̃ : Z → V1⊗V2⊗· · ·⊗Vm such that B̃◦π′ = π. In turn, the linear composite map C := Ã◦B̃ : Z → Z

satisfies C ◦ π′ = Ã ◦ B̃ ◦ π′ = Ã ◦ π = π′. If we reapply the universal property for Z from the

hypothesis for Y = Z and B = π′ we see that C is the unique linear map such that C ◦ π′ = π′. Of

course, the identity map IdZ : Z → Z is also such a map and so by uniqueness we find that C = IdZ .

Analogously (using Proposition 1.1.11.1.1 again for X = V1 ⊗ V2 ⊗ · · · ⊗ Vm and A = π), one obtains

B̃ ◦ Ã = IdV1⊗V2⊗···⊗Vm . Therefore, Ã and B̃ are inverse to each other and setting Φ := Ã proves the

claim. Since Ã is unique by the universal property, so is Φ. �

To establish the dimension of the tensor product V1 ⊗ V2 ⊗ · · · ⊗ Vm we need the following result

which involves a choice of basis for each component vector space Vi. In fact, in the above construction

the vector spaces need not be finite-dimensional. The following will be the first explicit reference to a

finite basis. We will omit the proof again because it only involves standard arguments from linear

8



1.1 Multilinear algebra

algebra and usage of the universal property. Essentially, we can form a basis for the tensor product

space by taking all possible tensor products of basis vectors of the component spaces.

Proposition 1.1.3 ([Lee13Lee13, Proposition 12.8, p. 309])

Let V1, V2, . . . , Vm be finite-dimensional real vector spaces of dimensions n1, n2, . . . , nm respectively.

Suppose
{
e

(j)
1 , e

(j)
2 , . . . , e

(j)
nj

}
is a basis for Vj for each j = 1, . . . ,m. Then the set

C :=
{
e

(1)
i1
⊗ e(2)

i2
⊗ · · · ⊗ e(m)

im

∣∣∣ 1 ≤ ij ≤ nj , j = 1, . . . ,m
}

is a basis for V1 ⊗ V2 ⊗ · · · ⊗ Vm. Therefore, the dimension of V1 ⊗ V2 ⊗ · · · ⊗ Vm is

dim (V1 ⊗ V2 ⊗ · · · ⊗ Vm) = n1n2 · · ·nm.

Let us denote the set of multilinear functions F : V1 × V2 × · · · × Vm → R by L(V1, V2, . . . , Vm;R). It

turns into a vector space if endowed with the usual pointwise addition and scalar multiplication

(F + F ′)(v1, . . . , vi, . . . , vm) := F (v1, . . . , vi, . . . , vm) + F ′(v1, . . . , vi, . . . , vm)

(aF )(v1, . . . , vi, . . . , vm) := a (F (v1, . . . , vi, . . . , vm)) .

The dual space of a vector space V consists of all linear functionals ω : V → R and will be denoted by

V ∗. Its elements are called linear forms or 1-forms. When dealing with indexed sets of elements

of V and V ∗ we will use lower indices to represent vectors and upper indices to represent linear forms.

Let {e1, e2, . . . , en} be a basis for V . The set
{
ε1, ε2, . . . , εn

}
⊂ V ∗ defined by εi(ej) := δij forms a

basis for V ∗ and is called the dual basis to the initial basis for V . Here δij is the Kronecker delta,

that is, δij = 1 if i = j and 0 otherwise. To avoid cluttering of indices we will occasionally denote the

dual basis by {e∗1, e∗2, . . . , e∗n} instead.

For ωi ∈ V ∗i , i = 1, . . . ,m define a map ω1 ⊗ ω2 ⊗ · · · ⊗ ωm : V1 × V2 × · · · × Vm → R by

(ω1 ⊗ ω2 ⊗ · · · ⊗ ωm)(v1, v2, . . . , vm) := ω1(v1)ω2(v2) · · ·ωm(vm). (1.1.1)

We call this map the concrete tensor product of ω1, ω2, . . . , ωm. Note that the concrete tensor

product is well-defined. This function is multilinear because R is a field, that is,

ω1 ⊗ ω2 ⊗ · · · ⊗ ωm ∈ L(V1, V2, . . . , Vm;R).

In fact, the space of multilinear functions is spanned be such elements.

9



Chapter 1 Preliminaries of multilinear algebra, convex geometry and differential geometry

Lemma 1.1.4 ([Lee13Lee13, Proposition 12.4, p. 306])

Let V1, V2, . . . , Vm be finite-dimensional real vector spaces of dimensions n1, n2, . . . , nm, respectively.

Suppose
{
e

(j)
1 , e

(j)
2 , . . . , e

(j)
nj

}
is a basis for Vj and by

{
ε1

(j), ε
2
(j), . . . , ε

nj
(j)

}
denote the corresponding

dual basis for V ∗j for each j = 1, . . . ,m. Then the set

C′ :=
{
εi1(1) ⊗ ε

i2
(2) ⊗ · · · ⊗ ε

im
(m)

∣∣∣ 1 ≤ ij ≤ nj , j = 1, . . . ,m
}

is a basis for L(V1, V2, . . . , Vm;R).

Thus, we conclude that a multilinear function F ∈ L(V1, V2, . . . , Vm;R) is uniquely determined by its

values Fi1i2...im := F
(
e

(1)
i1
, e

(2)
i2
, . . . , e

(m)
im

)
on a basis – analogously to linear functions. By Lemma 1.1.41.1.4

and Proposition 1.1.31.1.3 both vector spaces L(V1, V2, . . . , Vm;R) and V1 ⊗ V2 ⊗ · · · ⊗ Vm are of the same

dimension and therefore isomorphic. Naturally, the question arises whether there is an even stronger

connection between these spaces that respects the algebraic structure, that is, the multilinearity of

the elements. Indeed, the following result holds.

Lemma 1.1.5 ([Lee13Lee13, Proposition 12.10, p. 311])

If V1, V2, . . . , Vm are finite-dimensional vector spaces, there is a canonical isomorphism such that

V ∗1 ⊗ V ∗2 ⊗ · · · ⊗ V ∗m ∼= L(V1, V2, . . . , Vm;R).

Proof: Define a map Φ: V ∗1 × V ∗2 × · · · × V ∗m → L(V1, V2, . . . , Vm;R) by

Φ(ω1, ω2, . . . , ωm)(v1, v2, . . . , vm) := ω1(v1)ω2(v2) · · ·ωm(vm).

Because each ωi is a linear form the expression on the right is indeed a multilinear function in the

arguments v1, v2, . . . , vm. Further, Φ is a multilinear function in the arguments ω1, ω2, . . . , ωm because

Φ(ω1, ω2, . . . , aωi + ω̃i, . . . , ωm)(v1, v2, . . . , vm) = ω1(v1)ω2(v2) · · · (aωi + ω̃i)(vi) · · ·ωm(vm)

= ω1(v1)ω2(v2) · · ·
(
aωi(vi) + ω̃i(vi)

)
· · ·ωm(vm)

= aω1(v1)ω2(v2) · · ·ωi(vi) · · ·ωm(vm)

+ ω1(v1)ω2(v2) · · · ω̃i(vi) · · ·ωm(vm)

= aΦ(ω1, ω2, . . . , ωi, . . . , ωm)(v1, v2, . . . , vm)

+ Φ(ω1, ω2, . . . , ω̃i, . . . , ωm)(v1, v2, . . . , vm).

By the universal property of the tensor product (Proposition 1.1.11.1.1) Φ gives rise to a unique linear

10



1.1 Multilinear algebra

map Φ̃ : V ∗1 ⊗ V ∗2 ⊗ · · · ⊗ V ∗m → L(V1, V2, . . . , Vm;R) such that

Φ̃(ω1 ⊗ ω2 ⊗ · · · ⊗ ωm)(v1, v2, . . . , vm) = ω1(v1)ω2(v2) · · ·ωm(vm).

From this property we can conclude that Φ̃ takes tensor products to concrete tensor products of linear

forms as defined in (1.1.11.1.1). In addition, this implies that Φ̃ takes the basis of V ∗1 ⊗ V ∗2 ⊗ · · · ⊗ V ∗m
given by Proposition 1.1.31.1.3 to the basis of L(V1, V2, . . . , Vm;R) given by Lemma 1.1.41.1.4, so it is an

isomorphism. �

Through this identification, the elements of V ∗1 ⊗ V ∗2 ⊗ · · · ⊗ V ∗m can either be regarded as elements

of the abstract tensor product space or concretely as multilinear functions – whichever is more suitable.

Furthermore, each vector space Vi can be canonically identified with its bidual space V ∗∗i by the

isomorphism Φ: V → V ∗∗,Φ(v)(f) := f(v). If we fix a basis {e1, e2, . . . , en} for V and denote its dual

basis by {e∗1, e∗2, . . . , e∗n} and its bidual basis (the dual of the dual basis) by {e∗∗1 , e∗∗2 , . . . , e∗∗n } then it

can be seen that Φ is an isomorphism. The mapping Φ sends a basis vector ei of V to a basis vector

e∗∗i of V ∗∗ because

Φ(ei)(e
∗
j ) = e∗j (ei) = δji = e∗∗i (e∗j ).

Hence, Φ is bijective. Therefore, we obtain another canonical identification for the spaces

V1 ⊗ V2 ⊗ · · · ⊗ Vm ∼= V ∗∗1 ⊗ V ∗∗2 ⊗ · · · ⊗ V ∗∗m ∼= L(V ∗1 , V
∗
2 , . . . , V

∗
m,R).

1.1.2 The exterior power

Henceforth, we only consider a single n-dimensional vector space V . For an integer 1 ≤ m ≤ n, let us

denote the m-fold tensor power V ⊗m := V ⊗ · · · ⊗ V by Tm (V ). An element α ∈ Tm (V ) is called

an m-tensor of V of rank m. We want to focus on elements of Tm(V ) that are alternating. An

m-tensor v1⊗ v2⊗ · · · ⊗ vm of V is called alternating if vi = vj for some i 6= j. Denote the subspace

spanned by such alternating tensors by U ′. Then we define the m-th exterior power of V to

be
∧m

(V ) := Tm(V )/U ′. The equivalence class of an element v1 ⊗ v2 ⊗ · · · ⊗ vm in
∧m

(V ) will be

denoted

v1 ∧ v2 ∧ · · · ∧ vm := v1 ⊗ v2 ⊗ · · · ⊗ vm + U ′.

The elements of
∧m

(V ) and
∧m

(V ∗) are calledm-vectors and (exterior) m-forms respectively.

11



Chapter 1 Preliminaries of multilinear algebra, convex geometry and differential geometry

Recall that we can think of both m-vectors and m-forms as multilinear functions on V m and (V ∗)m

respectively. Note that these multilinear functions are alternating (that is, they evaluate to zero

on repeated arguments) by the definition of the exterior power. From this point, we will almost

exclusively present properties of m-vectors. Similar results hold for m-forms by exchanging the roles

of V and V ∗ and by using the isomorphism between V and V ∗∗ wherever necessary.

An m-vector is said to be simple if it can be expressed in the form σ = v1 ∧ v2 ∧ · · · ∧ vm,

where v1, v2, . . . vm ∈ V are linearly independent. The subset of
∧m

(V ) of all simple m-vectors is

called the Grassmannian cone GCm(V ) – the reason for this nomenclature will be explained later.

It is important to notice that not every m-vector is simple (as we will see shortly) and that the

representation as v1 ∧ v2 ∧ · · · ∧ vm is, in general, not unique.

The significance of the simple m-vectors is that they provide a basis for
∧m

V . Therefore, every

non-simple m-vectors can be written uniquely as a linear combination of simple ones.

Lemma 1.1.6 ([Lee13Lee13, Proposition 14.8, p. 353])

Suppose {v1, v2, . . . , vn} is a basis for V . Then for each 1 ≤ m ≤ n the set

L := {vi1 ∧ vi2 ∧ · · · ∧ vim | 1 ≤ i1 < i2 < . . . < im ≤ n}

constitutes a basis for the exterior power
∧m

(V ). Therefore, its dimension is

dim
(∧m

V
)

=

(
n

m

)
.

Let {v1, v2, . . . , vn} be a basis for V . Define the alternation mapping Alt : TmV →
∧m

(V ) on a

basis m-tensor as the signed average over all permutations of the components of this tensor, that is,

Alt(vi1 ⊗ vi2 ⊗ · · · ⊗ vim) :=
1

m!

∑
σ∈Sm

sgn (σ)vσ(i1) ∧ vσ(i2) ∧ · · · ∧ vσ(im).

Given an m-vector v ∈
∧m

(V ) and an l-vector w ∈
∧l

(V ) where 1 ≤ m + l ≤ n, we define their

wedge product to be

v ∧ w :=
(m+ l)!

m!l!
Alt(v ⊗ w).

The wedge product is a mapping from
∧m

(V )×
∧l

(V ) to
∧m+l

(V ).

12



1.1 Multilinear algebra

Lemma 1.1.7 (Basic Properties of the Exterior Power)

(i) Bilinearity: For a ∈ R, v ∈
∧m

(V ) and w,w′ ∈
∧l

(V )

(aw + w′) ∧ v = a(w ∧ v) + (w′ ∧ v),

v ∧ (aw + w′) = a(v ∧ w) + (v ∧ w′).

(ii) Associativity: For v ∈
∧k

(V ), w ∈
∧l

(V ) and u ∈
∧m

(V )

(v ∧ w) ∧ u = v ∧ (w ∧ u).

(iii) Anticommutativity: Let v1, v2, . . . , vm ∈ V and σ ∈ Sm be a permutation on the integers

{1, 2, . . . ,m}. Then

vσ(1) ∧ vσ(2) ∧ · · · ∧ vσ(m) = sgn (σ)v1 ∧ v2 ∧ · · · ∧ vm.

Furthermore, for v ∈
∧m

(V ) and w ∈
∧l

(V ) and a simple m-vector u ∈ GCm(V )

v ∧ w = (−1)mlw ∧ v,

u ∧ u = 0.

(iv) The ordered m-tuple (v1, v2, . . . , vm) is linearly independent in V if and only if

v1 ∧ v2 ∧ · · · ∧ vm 6= 0.

(v) Suppose W is a linear subspace of V and B1 := {w1, w2, . . . , wm} and B2 := {v1, v2, . . . , vm}

are two bases of W . Then

v1 ∧ v2 ∧ · · · ∧ vm = λw1 ∧ w2 ∧ · · · ∧ wm,

for λ = det
(
T ji

)
i,j=1,...,m

6= 0 where T : W →W is the linear map sending B1 to B2.

Proof: We omit the proofs of the parts (i)(i) - (iii)(iii) (see [Lee13Lee13, Proposition 14.11, p. 356]). To

prove part (iv)(iv) ([Lee13Lee13, Problem 14-4 (a), p. 376]) suppose v1, v2, . . . , vm are linearly independent.

We can extend {v1, v2, . . . , vm} to a basis {v1, v2, . . . , vn} of V . The top exterior power
∧n

(V ) is

13



Chapter 1 Preliminaries of multilinear algebra, convex geometry and differential geometry

one-dimensional by means of Lemma 1.1.61.1.6 and is spanned by the non-zero n-vector

0 6= v1 ∧ v2 ∧ · · · ∧ vn = (v1 ∧ v2 ∧ · · · ∧ vm) ∧ (vm+1 ∧ vm+2 ∧ · · · ∧ vn) ,

so v1 ∧ v2 ∧ · · · ∧ vm 6= 0. Conversely, suppose that v1, v2, . . . , vm are linearly dependent and assume

without loss of generality that v1 = a2v2 + . . .+ amvm. Then

v1 ∧ v2 ∧ · · · ∧ vm =
(
a2v2 + . . .+ amvm

)
∧ (v2 ∧ · · · ∧ vm) = 0

where the last equality is due to parts (i)(i) and (iii)(iii).

For part (v)(v) ([Lee13Lee13, Problem 14-4 (b), p. 376]) consider the linear map T : W → W given by

Twi := vi for i = 1, . . . ,m. In slight abuse of notation we identify the linear map T with its

matrix representation. Since both m-tuples span the same vector space we can express vi as a linear

combination of the wj , that is, vi = Twi =
∑m
j=1 T

j
i wj where T ji ∈ R. Then by using part (i)(i) we find

that

v1 ∧ v2 ∧ · · · ∧ vm = Tw1 ∧ Tw2 ∧ · · · ∧ Twm

=

 m∑
j1=1

T j11 wj1

 ∧
 m∑
j2=1

T j22 wj2

 ∧ · · · ∧
 m∑
jm=1

T jmm wjm


=

m∑
j1,j2,...,jm=1

(
m∏
l=1

T jll

)
wj1 ∧ wj2 ∧ · · · ∧ wjm .

By definition of the exterior power, any m-vector is alternating. Hence, any of the summands where

any two of the indices jl coincide can be discarded. Thus, only summands where (j1, j2, . . . , jm) are a

permutation of (1, 2, . . . ,m) add up. By this reasoning and part (iii)(iii) we can write

v1 ∧ v2 ∧ · · · ∧ vm =
∑
σ∈Sm

(
m∏
l=1

T
σ(l)
l

)
wσ(1) ∧ wσ(2) ∧ · · · ∧ wσ(m)

=
∑
σ∈Sm

sgn (σ)

(
m∏
l=1

T
σ(l)
l

)
w1 ∧ w2 ∧ · · · ∧ wm.

The last coefficient is the determinant of the matrix of the map T . This map is a bijection since W is

spanned by both B1 and B2. Thus, the determinant is non-zero. �

Now we are equipped to show that the set GCm(V ) of simple m-vectors is indeed a proper subset

of
∧m

(V ) as advertised earlier.
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1.1 Multilinear algebra

Example:

Let σ = e1∧e2 +e3∧e4 ∈
∧2

(R4), where ei ∈ R4 are the standard basis vectors. Then σ is not a simple

2-vector. To show this, suppose σ = v ∧ w for linearly independent v, w ∈ R4. Then v =
∑4
i=1 a

iei

and w =
∑4
j=1 b

jej. Using the basic properties (i)− (iii) in Lemma 1.1.71.1.7 we find

e1 ∧ e2 + e3 ∧ e4 = σ = v ∧ w =

(
4∑
i=1

aiei

)
∧

 4∑
j=1

bjej

 =

4∑
i=1

4∑
j=1

aibjei ∧ ej

= a1b1e1 ∧ e1 + a1b2e1 ∧ e2 + a1b3e1 ∧ e3 + a1b4e1 ∧ e4

+ a2b1e2 ∧ e1 + a2b2e2 ∧ e2 + a2b3e2 ∧ e3 + a2b4e2 ∧ e4

+ a3b1e3 ∧ e1 + a3b2e3 ∧ e2 + a3b3e3 ∧ e3 + a3b4e3 ∧ e4

+ a4b1e4 ∧ e1 + a4b2e4 ∧ e2 + a4b3e4 ∧ e3 + a4b4e4 ∧ e4

= (a1b2 − a2b1)e1 ∧ e2 + (a1b3 − a3b1)e1 ∧ e3 + (a1b4 − a4b1)e1 ∧ e4

+ (a2b3 − a3b2)e2 ∧ e3 + (a2b4 − a4b2)e2 ∧ e4 + (a3b4 − a4b3)e3 ∧ e4.

By equating coefficients we find for example that

a1b2 − a2b1 = 1

a3b4 − a4b3 = 1

a1b3 − a3b1 = 0

a2b3 − a3b2 = 0.

(1.1.2)

Assume b3 6= 0 and substitute a1 = a3

b3 b
1 into the first equation to get

a3

b3
b1b2 − a2b1 = 1.

But substituting the last equation of (1.1.21.1.2) into the left hand side of the previous identity gives the

contradiction

a2

b3
b1b3 − a2b1 = a2b1 − a2b1 = 0 6= 1.

Thus, b3 = 0. But then we know from (1.1.21.1.2) that a3b2 = 0 = a3b1. Suppose a3 = 0. This contradicts

the second equation of (1.1.21.1.2). So, we must have b2 = 0 = b1 which contradicts the first equation of

(1.1.21.1.2) and therefore σ is not simple.
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Chapter 1 Preliminaries of multilinear algebra, convex geometry and differential geometry

There is a useful characterisation of the exterior power of the dual space. Let us define a linear

mapping Φ:
∧m

(V ∗)→ (
∧m

(V ))
∗. First, define Φ on simple m-forms and m-vectors by

Φ
(
ωi1 ∧ ωi2 ∧ · · · ∧ ωim

)
(vj1 ∧ vj2 ∧ · · · ∧ vjm) := det

(
ωil(vjk)

)
l,k=1,...,m

.

Then extend the above definition of Φ bilinearly to all of
∧m

(V ∗) and (
∧m

(V ))
∗.

Lemma 1.1.8

The map Φ:
∧m

(V ∗)→ (
∧m

(V ))
∗ is an isomorphism. Moreover, if {e1, e2, . . . , en} is a basis for V

Φ(e∗i1 ∧ e
∗
i2 ∧ · · · ∧ e

∗
im) = (ei1 ∧ ei2 ∧ · · · ∧ eim)

∗

where the asterisk denotes the dual basis vector in the corresponding dual space.

Proof: By definition, Φ is a linear map. Let {e1, e2, . . . , en} be a basis for V . Then {e∗1, e∗2, . . . , e∗n}

is the dual basis for V ∗ (we break with our convention of upper indices for linear forms here) and

the sets { ei1 ∧ ei2 ∧ . . . ∧ eim | 1 ≤ i1 < i2 < . . . < im ≤ n } and B := { e∗i1 ∧ e
∗
i2
∧ · · · ∧ e∗im | 1 ≤

i1 < i2 < . . . < im ≤ n } are bases for
∧m

(V ) and
∧m

(V ∗), respectively. In addition, the set

C := { (ei1 ∧ ei2 ∧ · · · ∧ eim)
∗ | 1 ≤ i1 < i2 < . . . < im ≤ n } forms the dual basis of (

∧m
(V ))

∗.

We will show that Φ maps the basis B to the basis C which proves that it is an isomorphism. Let

I = (i1, i2, . . . , im) and J = (j1, j2, . . . , jm) be two strictly increasing multi-indices. Calculate

Φ(e∗i1 ∧ e
∗
i2 ∧ · · · ∧ e

∗
im)(ej1 ∧ ej2 ∧ · · · ∧ ejm) = det

(
e∗il(ejk)

)
l,k=1,...,m

= det
(
δiljk
)
l,k=1,...,m

.

If I = J then the right hand side is the determinant of the identity matrix and evaluates to 1.

Suppose I 6= J , then there is at least one l ∈ {1, . . . ,m} such that il 6= jk for all k ∈ {1, . . . ,m},

that is, there is at least one row in the matrix
(
δiljk
)
l,k=1...m

which consists only of zero-valued

entries. Therefore, the right hand side in the latter equation evaluates to zero. This proves that

Φ(e∗i1 ∧ e
∗
i2
∧ · · · ∧ e∗im) = (ei1 ∧ ei2 ∧ · · · ∧ eim)

∗ by definition of the dual basis. �

Hereafter, we will make no distinction between these two spaces and consequently let m-forms

ω ∈
∧m

(V ∗) act on m-vectors σ ∈
∧m

(V ).

1.1.3 The Plücker embedding

Let us investigate the implications of Lemma 1.1.71.1.7 (v)(v) in more detail. Consider an N -dimensional

vector space V and define an equivalence relation ∼ on the set V \ {0} by proposing that two non-
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zero elements v, w ∈ V are equivalent if and only if there is a non-zero number λ ∈ R such that

v = λw. The equivalence class [v]∼ is the one-dimensional subspace spanned by v ∈ V. The quotient

P(V) := (V \ {0}) / ∼ is called projective space . Geometrically speaking, we can view the projective

space P(V) as the set of all lines in V that pass through the origin, that is, the set of all one-dimensional

subspaces of the N -dimensional vector space V.

Generalising the preceding idea, let us define the set Gm(V) of all m-dimensional subspaces of an

N -dimensional vector space V for each 1 ≤ m ≤ N . This set is called the Grassmannian of V .

We introduce a mapping ρ : Gm(V )→ P (
∧m

(V )). Let W ∈ Gm(V ) be an m-dimensional subspace

of V and {w1, w2, . . . , wm} a basis of W . Define ρ(W ) := [w1 ∧ w2 ∧ · · · ∧ wm]∼. By means of

Lemma 1.1.71.1.7 (v)(v) this mapping is well-defined because different choices of bases for W yield the same

image in the projective space P (
∧m

(V )). The mapping ρ is known as the Plücker embedding .

Proposition 1.1.9 ([Har95Har95, p. 64])

The Plücker embedding ρ : Gm(V )→ P (
∧m

(V )) is injective.

Proof: This proof is due to [Hud07Hud07, Proposition 2.3, p. 3]. Define ϕ : P (
∧m

(V ))→
⋃n
s=1Gs(V ) by

ϕ ([w]∼) :=

{
v ∈ V

∣∣∣∣ v ∧ w = 0 ∈
∧m+1

(V )

}
.

The set ϕ ([w]∼) is a subspace of V due to the bilinearity of the wedge product (Lemma 1.1.71.1.7 (i)(i)).

Thus, the map ϕ is well-defined. We will show that ϕ is a left-inverse of ρ, that is, ϕ ◦ ρ = IdGm(V ).

Let W ∈ Gm(V ) be arbitrary with basis {w1, w2, . . . , wm}, such that ρ(W ) = [w1 ∧ w2 ∧ · · · ∧ wm]∼.

For each w ∈W , it is clear by Lemma 1.1.71.1.7 (iv)(iv) that w∧w1∧w2∧ · · ·∧wm = 0 hence, W ⊂ ϕ◦ρ(W ).

Conversely, if v ∈ ϕ ◦ ρ(W ) then v ∧ w1 ∧ w2 ∧ · · · ∧ wm = 0. Extend (w1, w2, . . . , wm) to a basis

{w1, w2, . . . , wn} of V and write v =
∑n
i=1 a

iwi. The anticommutativity of the wedge product

(Lemma 1.1.71.1.7 (iii)(iii)) implies

0 =

(
n∑
i=1

aiwi

)
∧ w1 ∧ w2 ∧ · · · ∧ wm

= (−1)m
n∑

i=m+1

ai w1 ∧ w2 ∧ · · · ∧ wm ∧ wi

and because w1 ∧w2 ∧ · · · ∧wm ∧wi for i = m+ 1, . . . , n are linearly independent (m+ 1)-vectors by

means of Lemma 1.1.61.1.6, all the coefficients ai for i = m+ 1, . . . , n vanish. Thus, v =
∑m
i=1 a

iwi ∈W

and ϕ ◦ ρ(W ) ⊂W . This proves that ρ is injective. �

Many more results are known about the Plücker embedding. For example, the Plücker embedding
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is, in fact, a topological embedding, that is, a homeomorphism onto its image and hence deserves its

name. For more details, we refer to the survey article [BN91BN91]. The Plücker embedding provides an

important relationship between m-dimensional subspaces and simple m-vectors.

Lemma 1.1.10 ([Hud07Hud07, Lemma 3.8, p. 7])

An element [w]∼ ∈ P (
∧m

(V )) lies in the image of the Grassmannian under the Plücker embedding if

and only if w is a simple m-vector. That is, [w]∼ ∈ Im(ρ) if and only if w ∈ GCm(V ).

Proof: If w can be written as w = v1∧v2∧· · ·∧vm for linearly independent vectors v1, v2, . . . , vm ∈ V

then the subspace of V spanned by {v1, v2, . . . , vm} is m-dimensional, hence there is a U ∈ Gm(V )

with U = span {v1, v2, . . . , vm} and ρ(U) = [w]∼. Conversely, suppose [w]∼ = ρ(U) for some

U ∈ Gm(V ). Choose a basis {u1, u2, . . . , um} for U . Then by definition of the Plücker embedding

[w]∼ = [u1 ∧ u2 ∧ · · · ∧ um]∼. Thereby, w can be written as λu1 ∧ u2 ∧ · · · ∧ um for some non-zero

scalar λ ∈ R, and so ω is a simple m-vector. �

Generally, an algebraic cone is a subset C of a vector space such that λc ∈ C whenever c ∈ C and

λ > 0. The Plücker embedding provides us with a tool to treat the Grassmannian as a subset of the

projectivisation of simple m-vectors. This is the reason why the set of simple vectors is called the

Grassmannian cone GCm(V ). Thompson [Tho96Tho96, p. 196] attributes this nomenclature to Busemann,

Ewald and Shepard [BES63BES63].

1.1.4 Inner products, volume forms and a Riesz-type isomorphism

Let us conclude the section on multilinear algebra by imposing an additional structure. Suppose

(V, 〈·, ·〉V ) is an inner product space, which is a finite-dimensional vector space with a positive-definite,

symmetric, bilinear mapping 〈·, ·〉V : V × V → R, called an inner product . Notice that the inner

product induces a norm

‖·‖V : V → R+, v 7→ 〈v, v〉
1
2

V

on V . The dual norm

‖ω‖V ∗ := sup
‖u‖V =1

|ω(u)|

of a linear form ω ∈ V ∗ turns the dual space V ∗ into a normed space. By the Riesz representation

theorem [Wer00Wer00, Theorem V.3.6, p. 228] the map J : V → V ∗ given by J(v)(u) := 〈v, u〉V for

v, u ∈ V is an isomorphism. The dual space V ∗ turns into an inner product space by defining
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1.1 Multilinear algebra

〈ω, ν〉V ∗ :=
〈
J−1(ω), J−1(ν)

〉
V
. Since J−1 is linear and 〈·, ·〉V is bilinear, so is 〈·, ·〉V ∗ . The symmetry

of this mapping follows immediately from the symmetry of 〈·, ·〉V . Because J−1 is an isomorphism

and the inner product on V is positive-definite, the positive-definiteness of 〈·, ·〉V ∗ follows.

With respect to this inner product on the dual space, J is an isometry , which means it is an

isomorphism that preserves the inner product. In fact, the dual norm as defined above is induced by

this inner product because J is an isometry. This can be seen by calculating that for some ω ∈ V ∗

and the corresponding v ∈ V with J(v) = ω one obtains

‖ω‖V ∗ = sup
‖u‖V =1

|ω(u)| = sup
‖u‖V =1

|J(v)(u)| = sup
‖u‖V =1

|〈v, u〉V | ≤ sup
‖u‖V =1

‖v‖V ‖u‖V = ‖v‖V .

Further, ∣∣∣∣w( v

‖v‖V

)∣∣∣∣ =

∣∣∣∣〈v, v

‖v‖V

〉
V

∣∣∣∣ = ‖v‖V ,

and thus,

‖ω‖2V ∗ = ‖v‖2V = 〈v, v〉V =
〈
J−1(ω), J−1(ω)

〉
V

= 〈ω, ω〉V ∗ .

Moreover, we can endow the exterior power
∧m

(V ) with an inner product. Define it on simple

m-vectors by

〈v1 ∧ v2 ∧ · · · ∧ vm, w1 ∧ w2 ∧ · · · ∧ wm〉∧m(V ) := det
(
〈vi, wj〉V

)
i,j=1...m

where vi, wi ∈ V for i = 1, . . . ,m and extend bilinearly (see e.g. [Tho96Tho96, p. 192]). The symmetry then

follows from the properties of the determinant and the inner product on V . The positive-definiteness

is established as follows. The matrix G :=
(
〈vi, vj〉V

)
i,j=1...m

∈ Rm×m – the so-called Gram matrix

of 〈·, ·〉V – is positive semi-definite because for 0 6= α ∈ Rm

αtGα =

m∑
i=1

m∑
j=1

αi〈vi, vj〉V αj =

〈
m∑
i=1

αivi,

m∑
j=1

αjvj

〉
V

=

∥∥∥∥∥
m∑
i=1

αivi

∥∥∥∥∥
2

V

≥ 0 (1.1.3)

where we simply renamed the index j in the last equation. Suppose α 6= 0 is an eigenvector of G

and λ ∈ R its eigenvalue. Then λ = ‖
∑m
i=1 αivi‖

2

V
/‖α‖2Rm ≥ 0 by 1.1.31.1.3. Since the determinant is

the product of the eigenvalues, we have det(G) ≥ 0. Further, det(G) = 0 if and only if at least

one eigenvalue equals zero. This means det(G) = 0 if and only if there is 0 6= α ∈ Rm such that∑m
i=1 αivi = 0. Equivalently, det(G) = 0 if and only if the set {v1, v2, . . . , vm} is linearly dependent.
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Due to Lemma 1.1.71.1.7 (iv)(iv) this means det(G) = 0 if and only if v1 ∧ v2 ∧ · · · ∧ vm = 0. Hence, 〈·, ·〉∧m(V )

does indeed define an inner product.

Again the map J :
∧m

(V )→ (
∧m

(V ))
∗ given by J (σ)(τ) := 〈σ, τ〉∧m(V ) for σ, τ ∈

∧m
(V ) is an

isomorphism which is isometric with respect to the induced dual inner product on (
∧m

(V ))
∗

Recall from Lemma 1.1.81.1.8 that
∧m

(V ∗) and (
∧m

(V ))
∗ are isomorphic through Φ. Since now there

are inner products on each of these spaces at our disposal, the question arises whether Φ is also an

isomorphism of inner product spaces not only vector spaces, that is, whether Φ preserves the inner

product.

Let I := { (i1, i2, . . . , im) | 1 ≤ i1 < i2 < . . . < im ≤ n } and {e1, e2, . . . , en} be a basis for V .

Further, let F =
∑
I∈I a

Ie∗i1 ∧ e
∗
i2
∧ · · · ∧ e∗im and G =

∑
I∈I b

Ie∗i1 ∧ e
∗
i2
∧ · · · ∧ e∗im be two elements

of
∧m

(V ∗). Recall that Φ(e∗i1 ∧ e
∗
i2
∧ · · · ∧ e∗im) = (ei1 ∧ ei2 ∧ · · · ∧ eim)

∗ by Lemma 1.1.81.1.8. It follows

from the definition of the induced inner product on the dual space that

〈Φ(F ),Φ(G)〉(∧m(V ))∗ =
∑
I,J∈I

aIbJ
〈
Φ
(
e∗i1 ∧ e

∗
i2 ∧ · · · ∧ e

∗
im

)
,Φ
(
e∗j1 ∧ e

∗
j2 ∧ · · · ∧ e

∗
jm

)〉
(
∧m(V ))∗

=
∑
I,J∈I

aIbJ
〈
(ei1 ∧ ei2 ∧ · · · ∧ eim)

∗
, (ej1 ∧ ej2 ∧ · · · ∧ ejm)

∗〉
(
∧m(V ))∗

=
∑
I,J∈I

aIbJ〈ei1 ∧ ei2 ∧ · · · ∧ eim , ej1 ∧ ej2 ∧ · · · ∧ ejm〉∧m(V )

=
∑
I,J∈I

aIbJ det
(
〈eil , ejk〉V

)
l,k=1,...,m

=
∑
I,J∈I

aIbJ det
(〈
e∗il , e

∗
jk

〉
V ∗

)
l,k=1,...,m

=
∑
I,J∈I

aIbJ
〈
e∗i1 ∧ e

∗
i2 ∧ · · · ∧ e

∗
im , e

∗
j1 ∧ e

∗
j2 ∧ · · · ∧ e

∗
jm

〉∧m(V ∗)

= 〈F,G〉∧m(V ∗).

Thus, we have proved the following result.

Lemma 1.1.11

The spaces
(∧m

(V ∗), 〈·, ·〉∧m(V ∗)

)
and

(
(
∧m

(V ))
∗
, 〈·, ·〉(∧m(V ))∗

)
are isometrically isomorphic by

means of the mapping Φ:
∧m

(V ∗)→ (
∧m

(V ))
∗ in Lemma 1.1.81.1.8.

Similarly to Lemma 1.1.81.1.8 we will not distinguish these two spaces and use either of the inner products

and norms - whichever is more convenient.

Two vectors v, v′ ∈ V of an inner product space V are said to be orthogonal if 〈v, v′〉V = 0 and

orthonormal if additionally 〈v, v〉V = 1 = 〈v′, v′〉V . Let {e1, e2, . . . , en} be an orthonormal basis for
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V . Then for two strictly increasing multi-indices I and J

〈ei1 ∧ ei2 ∧ · · · ∧ eim , ej1 ∧ ej2 ∧ · · · ∧ ejm〉∧m(V ) = det
(
〈eil , ejk〉V

)
l,k=1...m

= det
(
δiljk
)
l,k=1...m

.

By the same argumentation used in the proof of Lemma 1.1.81.1.8 the right hand side is 0 if I 6= J and 1

if I = J . The preceding calculation proves the next result.

Corollary 1.1.12

An orthonormal basis {e1, e2, . . . , en} for V yields an orthonormal basis {ei1 ∧ ei2 ∧ · · · ∧ eim | 1 ≤

i1 < i2 < . . . < im ≤ n} for the exterior power
∧m

(V ).

Corollary 1.1.13

The spaces
(∧m

(Rn), ‖·‖∧m(Rn)

)
and

(
RN , ‖·‖RN

)
, where N :=

(
n
m

)
and ‖·‖RN is the standard

Euclidean norm on RN , are isometrically isomorphic.

Proof: Let {e1, e2, . . . , en} be the standard orthonormal basis for Rn. Due to the preceding corollary

the set E := {ei1 ∧ ei2 ∧ · · · ∧ eim | 1 ≤ i1 < i2 < . . . < im ≤ n} is an orthonormal basis for
∧m

(Rn).

Consider the set I :=
{

(i1, i2, . . . , im)
∣∣ 1 ≤ i1 < i2 < . . . < im ≤ n

}
of strictly increasing multi-indices.

Let E := {ẽI | I ∈ I} denote the standard orthonormal basis for RN . Since both spaces are of the

same dimension
(
n
m

)
, let Φ:

∧m
(Rn)→ RN be the isomorphism that sends the basis E to the basis E.

Then for σ =
∑
I∈I a

Iei1 ∧ ei2 ∧ · · · ∧ eim ∈
∧m

(Rn) we have that

‖σ‖2∧m(Rn) =

∥∥∥∥∥∑
I∈I

aIei1 ∧ ei2 ∧ · · · ∧ eim

∥∥∥∥∥
2

∧m(Rn)

=
∑
I∈I

(aI)2

because of the orthonormality of E . On the other hand

‖Φ(σ)‖2RN =

∥∥∥∥∥∑
I∈I

aIΦ(ei1 ∧ ei2 ∧ · · · ∧ eim)

∥∥∥∥∥
2

RN
=

∥∥∥∥∥∑
I∈I

aI ẽI

∥∥∥∥∥
2

RN
=
∑
I∈I

(aI)2

which proves the claim. �

Lemma 1.1.14

For any σ = w1 ∧ w2 ∧ · · ·wm ∈ GCm(V ) it holds that

‖σ‖∧m(V ) ≤
m∏
i=1

‖wi‖V (1.1.4)

with equality if and only if w1, w2, . . . , wm are pairwise orthogonal.
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Proof: We will take advantage of the alternating property of the wedge product. By means of the

Gram–Schmidt process define the vectors

w̃1 := w1 v1 :=
w̃1

‖w̃1‖V

w̃i := wi −
i−1∑
j=1

〈wi, vj〉V vj vi :=
w̃i
‖w̃i‖V

, i = 2, 3, . . .m.

Note that the vectors {w̃1, w̃2, . . . , w̃m} and {v1, v2, . . . , vm} are pairwise orthogonal respectively. By

definition of the vectors w̃i and vi and the multilinearity of the wedge product we see that

w̃1 ∧ w̃2 ∧ · · · ∧ w̃m = w̃1 ∧ w̃2 ∧ · · · ∧ w̃m−1 ∧

wm − m−1∑
j=1

〈wi, vj〉V vj


= w̃1 ∧ w̃2 ∧ · · · ∧ w̃m−1 ∧ wm −

m−1∑
j=1

〈wi, vj〉V w̃1 ∧ w̃2 ∧ · · · ∧ w̃m−1 ∧
w̃j
‖w̃j‖V

= w̃1 ∧ w̃2 ∧ · · · ∧ w̃m−1 ∧ wm

where we used Lemma 1.1.71.1.7 (v)(v) in the last step. Proceeding inductively, we have shown that

w̃1 ∧ w̃2 ∧ · · · ∧ w̃m = w1 ∧ w2 ∧ · · · ∧ wm.

Thus, it follows that

w1 ∧ w2 ∧ · · · ∧ wm = w̃1 ∧ w̃2 ∧ · · · ∧ w̃m =

(
m∏
i=1

‖w̃i‖V

)
v1 ∧ v2 ∧ · · · ∧ vm.

Use the definition of the induced norm to get

‖w̃i‖2V = 〈w̃i, w̃i〉V =

〈
wi −

i−1∑
j=1

〈wi, vj〉V vj , wi −
i−1∑
k=1

〈wi, vk〉V vk

〉
V

= 〈wi, wi〉V − 2

i−1∑
j=1

〈wi, vj〉2V +

i−1∑
j=1

i−1∑
k=1

〈wi, vj〉V 〈wi, vk〉V 〈vj , vk〉V︸ ︷︷ ︸
=δjk

= 〈wi, wi〉V −
i−1∑
j=1

〈wi, vj〉2V ≤ 〈wi, wi〉V = ‖wi‖2V .

(1.1.5)
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Subsequently, we find that

‖σ‖∧m(V ) = ‖w1 ∧ w2 ∧ · · · ∧ wm‖∧m(V )

=

(
m∏
i=1

‖w̃i‖V

)
‖v1 ∧ v2 ∧ · · · ∧ vm‖∧m(V )

≤

(
m∏
i=1

‖wi‖V

)
‖v1 ∧ v2 ∧ · · · ∧ vm‖∧m(V ) =

(
m∏
i=1

‖wi‖V

)

The last inequality follows from Corollary 1.1.121.1.12 since {v1, v2, . . . , vm} is an orthonormal set of vectors.

Assume equality holds in (1.1.41.1.4). We will show that wi = w̃i with w̃i defined as above; for then

w1, w2, . . . , wm are pairwise orthogonal by the Gram–Schmidt process. By definition of w̃i,

wi = w̃i +

i−1∑
j=1

〈wi, vj〉V vj .

Equality in (1.1.41.1.4) implies equality in (1.1.51.1.5), so that
∑i−1
j=1 〈wi, vj〉

2
V = 0 for all i = 1, 2, . . . ,m.

Therefore, for each i = 1, 2, . . . ,m we know that 〈wi, vj〉V = 0 for j = 1, 2, . . . , i− 1. Hence, wi = w̃i.

Conversely, if w1, w2, . . . , wm are pairwise orthogonal then by definition of the norm on the exterior

power

‖w1 ∧ w2 ∧ · · · ∧ wm‖2∧m(V ) = det
(
〈wi, wj〉V

)
i,j=1...m

= det (〈wi, wi〉V δij)i,j=1...m

=

m∏
i=1

‖wi‖2V =

(
m∏
i=1

‖wi‖V

)2

. �

Recall that the dimension of
∧m

(V ) is the binomial coefficient
(
n
m

)
. Therefore, the top exterior power∧n

(V ) is one-dimensional, meaning it is just a real line. A non-zero n-form ω ∈
∧n

(V ∗) ∼= (
∧n

(V ))
∗

is called a volume (or orientation) form for V . In the two-dimensional case we will call an

element of
∧2

(V ∗) an area form for V . A volume form provides the one-dimensional real line
∧n

(V )

with an orientation in a natural way by proposing that v1 ∧ v2 ∧ · · · ∧ vn is positively oriented if

ω(v1 ∧ v2 ∧ · · · ∧ vn) > 0.

Two volume forms ω and ω′ establish the same orientation if and only if the factor by which they differ

is positive. In particular, given a basis {e1, e2, . . . , en} for V , denote its dual basis {ε1, ε2, . . . , εn}.

Then the n-form ωe = ε1 ∧ ε2 ∧ · · · ∧ εn is a volume form such that ωe(e1 ∧ e2 ∧ · · · ∧ en) = 1. It is

called the standard volume form . Since
∧n

(V ∗) is one-dimensional, every other volume form ω is
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a real multiple of the standard volume form ωe. Conversely, given an arbitrary volume form ω one

can choose a basis {e′i}mi=1 for V such that ω(e′1 ∧ e′2 ∧ · · · ∧ e′n) = 1.

Let {e1, e2, . . . , en} ⊂ V and {v1, v2, . . . , vn} ⊂ V be two bases of V . Then the n-vectors v1 ∧ v2 ∧

· · · ∧ vn and e1 ∧ e2 ∧ · · · ∧ en are consistently oriented with respect to a volume form ω ∈
∧n

(V ∗)

if

sgn (ω(v1 ∧ v2 ∧ · · · ∧ vn)) = sgn (ω(e1 ∧ e2 ∧ · · · ∧ en)).

Note that this can always be achieved by switching v1 and v2 if necessary. Lemma 1.1.71.1.7 (v)(v) and the

properties of the norm on
∧n

(V ) imply

‖v1 ∧ v2 ∧ · · · ∧ vn‖∧n(V )

‖e1 ∧ e2 ∧ · · · ∧ en‖∧n(V )

= |det(T )| = |ω(v1 ∧ v2 ∧ · · · ∧ vn)|
|ω(e1 ∧ e2 ∧ · · · ∧ en)|

wherein T : V → V is the linear map that sends ei to vi. If e1 ∧ e2 ∧ . . . ∧ en is a positively oriented

unit n-vector then

‖v1 ∧ v2 ∧ · · · ∧ vn‖∧n(V ) =
|ω(v1 ∧ v2 ∧ · · · ∧ vn)|
ω(e1 ∧ e2 ∧ · · · ∧ en)

(1.1.6)

and if, in addition, ω = ωe is the standard volume form corresponding to {e1, e2, . . . , en} then

‖v1 ∧ v2 ∧ · · · ∧ vn‖∧n(V ) = |ω(v1 ∧ v2 ∧ · · · ∧ vn)|. (1.1.7)

In Euclidean space the following result gives meaning to the name “volume form”.

Proposition 1.1.15 ([For09For09, (5.3) Beispiel, p. 48])

Let v1, v2, . . . , vn ∈ Rn be linearly independent vectors and P the parallelotope spanned by these vectors,

that is, P :=
{∑n

i=1 tivi
∣∣ ti ∈ [0, 1]

}
. Then Ln(P ) = ‖v1 ∧ v2 ∧ · · · ∧ vn‖∧n(Rn) where Ln is the

n-dimensional Lebesgue measure on Rn.

Proof: The standard basis {e1, e2, . . . , en} ⊂ Rn is orthonormal with respect to the standard

Euclidean scalar product. Hence, ‖e1 ∧ e2 ∧ · · · ∧ en‖∧n(Rn) = 1 by Corollary 1.1.121.1.12. Consider the

linear map T : Rn → Rn that sends ei to vi. Then P is the image of the unit cube [0, 1]n ⊂ Rn under

this mapping. Recall that the n-dimensional Lebesgue measure of the unit cube is 1. Further, the

differential of a linear map is a linear map which has the same matrix representation. Now observe

that by the change of variables theorem (see e.g. [For09For09, §13, Satz 2, p. 120]) the n-dimensional
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Lebesgue measure of P equals

Ln(P ) =

∫
T ([0,1]n)

1 dLn =

∫
[0,1]n

|det dT | dLn = |detT |Ln([0, 1]n)

= |detT | =
‖v1 ∧ v2 ∧ · · · ∧ vn‖∧n(Rn)

‖e1 ∧ e2 ∧ · · · ∧ en‖∧n(Rn)

= ‖v1 ∧ v2 ∧ · · · ∧ vn‖∧n(Rn). �

Hence, by using (1.1.61.1.6) and Proposition 1.1.151.1.15, we find that the volume form applied to some

v1 ∧ v2 ∧ · · · ∧ vn gives the (signed) n-dimensional Lebesgue measure of the parallelotope spanned by

the vectors v1, v2, . . . , vn with respect to some normalisation. This normalisation corresponds to the

assignment of a value for the volume of the “standard parallelotope”. This geometric interpretation

justifies the given terminology.

The following considerations are needed in the application of multilinear algebra in Chapter 22.

Given a volume form ω ∈
∧n

(V ∗), we want to to show that there is a Riesz-type isomorphism

between V and its dual space V ∗ by using the volume form (instead of the inner product). Less

vaguely, let us define a map ι̃ω :
∧n−1

(V )→ V ∗ by

ι̃ω(σ)(v) := ω(σ ∧ v) (1.1.8)

where σ ∈
∧n−1

(V ), v ∈ V .

Proposition 1.1.16

The map ι̃ω :
∧n−1

(V )→ V ∗ defined by (1.1.81.1.8) is an isomorphism.

Proof: First, note that both
∧n−1

(V ) and V ∗ are n-dimensional. Clearly ι̃ω is linear because for

arbitrary but fixed v ∈ V we know that

ι̃ω(aσ + σ′)(v) = ω((aσ + σ′) ∧ v) = aω(σ ∧ v) + ω(σ′ ∧ v) = aι̃ω(σ)(v) + ι̃ω(σ′)(v)

where we used the bilinearity of the wedge product (Lemma 1.1.71.1.7 (i)(i)) and the linearity of a volume

form. Let {v1, v2, . . . vn} be a basis for V . Any σ ∈
∧n−1

(V ) can be written as a linear combination

of basis (n − 1)-vectors σ =
∑n
j=1 α

jv1 ∧ v2 ∧ · · · ∧ v̂j ∧ · · · ∧ vn where the hat indicates that vj is

to be omitted. Let σ ∈
∧n−1

(V ) be such that ω(σ ∧ v) = 0 for all v ∈ V . Note that if i 6= j then

v1 ∧ v2 ∧ · · · ∧ v̂j ∧ · · · ∧ vn ∧ vi = 0. Thus, we have the following n equations

0 = ω(σ ∧ vi) =

n∑
j=1

αjω(v1 ∧ v2 ∧ · · · ∧ v̂j ∧ · · · ∧ vn ∧ vi)

= αiω(v1 ∧ v2 ∧ · · · ∧ v̂i ∧ · · · ∧ vn ∧ vi)
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= (−1)n−iαiω(v1 ∧ v2 ∧ · · · ∧ vn)

for i = 1, 2, . . . , n. Because ω is not the zero form and v1 ∧ v2 ∧ · · · ∧ vn spans
∧n

(V ), we find that

αi = 0 for all i = 1, 2, . . . , n, that is, σ = 0. Hence, the kernel of ι̃ω is trivial and ι̃ω is injective.

Let l ∈ V ∗ be arbitrary. For j = 1, 2, . . . , n define the coefficients

αj := (−1)n−j
l(vj)

ω(v1 ∧ v2 ∧ · · · ∧ vn)

and set σ :=
∑n
j=1 α

jv1∧v2∧· · ·∧ v̂j ∧· · ·∧vn. Then ι̃ω(σ) = l since for arbitrary v =
∑n
i=1 β

ivi ∈ V

it holds that ω(v1 ∧ v2 ∧ · · · ∧ v̂j ∧ · · · ∧ vn ∧ v) = (−1)n−jβjω(v1 ∧ v2 · · · ∧ vn) and thus

ι̃ω(σ)(v) = ω(σ ∧ v) =

n∑
j=1

αjω(v1 ∧ v2 ∧ · · · ∧ v̂j ∧ · · · ∧ vn ∧ v)

=

n∑
j=1

(−1)n−j l(vj)

ω(v1 ∧ v2 ∧ · · · ∧ vn)
ω(v1 ∧ v2 ∧ · · · ∧ v̂j ∧ · · · ∧ vn ∧ v)

=
1

ω(v1 ∧ v2 ∧ · · · ∧ vn)

n∑
j=1

l(vj)β
jω(v1 ∧ v2 ∧ · · · ∧ vn)

=

n∑
j=1

l(vj)β
j = l

 n∑
j=1

βjvj

 = l (v) ,

that is, ι̃ω is also surjective and thereby an isomorphism. �

Since dim (
∧m

(V )) =
(
n
m

)
=
(

n
n−m

)
= dim

(∧n−m
(V )
)
we know these two spaces are isomorphic

as vector spaces. This holds true generally for same-dimensional vector spaces, but the isomorphism

is not necessarily canonical (that is, basis-independent). In this particular case however, the so-called

Hodge dual ? :
∧m

(V )→
∧n−m

(V ) indeed provides a canonical isomorphism between
∧m

(V ) and∧n−m
(V ). Let us only state that the inner product structure and a fixed orientation is needed to

show that the Hodge dual is an isomorphism. It is completely determined by the equation

(?λ) ∧ θ = 〈λ, θ〉∧m(V )ε (1.1.9)

where λ, θ ∈
∧m

(V ) are arbitrary and ε ∈
∧n

(V ) with ‖ε‖∧n(V ) = 1 is the positively oriented unit

n-vector (see [BG68BG68, §2.22, pp. 108–110] or [Fla63Fla63, §2.7, p. 15]).

Using the Hodge dual for m = 1 together with Proposition 1.1.161.1.16 yields the isomorphism

ιω = ι̃ω ◦ ? : V → V ∗. (1.1.10)
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Note that we only needed an inner product for the Hodge dual – Proposition 1.1.161.1.16 holds more

generally in finite-dimensional normed vector spaces V . In particular, if the dimension dim (V ) = n = 2

then the isomorphism ι̃ω suffices for our needs and no inner product on V is required.

Let us define an n-vector ω∗ := (ιω)
∗
ω ∈

∧n
(V ) ∼=

∧n
((V ∗)

∗
) as the pullback of the volume form

ω by ιω, that is,

ω∗(ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn) := ω
(

(ιω)
−1

(ϕ1) ∧ (ιω)
−1

(ϕ2) ∧ · · · ∧ (ιω)
−1

(ϕn)
)
. (1.1.11)

for ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn ∈ GCn(V ∗) and extend linearly to
∧n

(V ∗). This is well-defined because ω

itself is an n-form and thus alternating. In addition, ω∗ is non-zero because ιω is an isomorphism.

Therefore, ω∗ is a volume form on the dual space V ∗. It will be called the dual volume form with

respect to ω.

Lemma 1.1.17

Let {e1, e2, . . . , en} be an orthonormal basis for V and ω = ωe the standard volume form. Denote the

dual basis on V ∗ by {ε1, ε2, . . . , εn}. Then ιω(ei) = εi for all i = 1, 2, . . . , n and

ω∗(ε1 ∧ ε2 ∧ · · · ∧ εn) = 1∥∥ε1 ∧ ε2 ∧ · · · ∧ εn
∥∥∧n(V ∗)

= 1.

Proof: The element e1 ∧ e2 ∧ . . . ∧ en is the positively oriented unit n-vector of
∧n

(V ) since its

components form an orthonormal basis of V . The first assertion then follows from (1.1.91.1.9) since

ιω(ei)(ej) = (ι̃ω ◦ ?)(ei)(ej) = ι̃ω(?ei)(ej)

= ω(?ei ∧ ej)

= ω
(
〈ei, ej〉V e1 ∧ e2 ∧ · · · ∧ en

)
= δijω (e1 ∧ e2 ∧ · · · ∧ en) = δij

for all i, j = 1, 2, . . . , n. Then

ω∗(ε1 ∧ ε2 ∧ · · · ∧ εn) = ω
(

(ιω)
−1

(ε1) ∧ (ιω)
−1

(ε2) ∧ · · · ∧ (ιω)
−1

(εn)
)

= ω (e1 ∧ e2 ∧ · · · ∧ en) = 1.

If {e1, e2, . . . , en} is an orthonormal basis for V then the dual basis {ε1, ε2, . . . , εn} is orthonormal in

V ∗ by virtue of the Riesz representation theorem. The definition of the norm on
∧n

(V ∗) implies the

27
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final statement. �

Proposition 1.1.18 (Isometric property of ιω)

Let {e1, e2, . . . , en} be an orthonormal basis for V and ω = ωe the standard volume form. The

isomorphism ιω given by (1.1.101.1.10) is isometric in the following sense:

‖ιω(v1) ∧ ιω(v2) ∧ · · · ∧ ιω(vn)‖∧n(V ∗) = ‖v1 ∧ v2 ∧ · · · ∧ vn‖∧n(V )

for all v1 ∧ v2 ∧ · · · ∧ vn ∈
∧n

(V ).

Proof: Recall that v1 ∧ v2 ∧ · · · ∧ vn 6= 0 ∈
∧n

(V ) if and only if v1, v2, . . . , vn ∈ V are linearly

independent. So, because ιω is an isomorphism, the set {ιω(v1), ιω(v2), . . . , ιω(vn)} is a basis for V ∗ if

v1 ∧ v2 ∧ · · · ∧ vn 6= 0 ∈
∧n

(V ). Let T : V ∗ → V ∗ be the map that sends εi to ιω(vi) where εi is the

dual basis vector to ei. Lemma 1.1.71.1.7 (v)(v) and Lemma 1.1.171.1.17 yield

‖ιω(v1) ∧ ιω(v2) ∧ · · · ∧ ιω(vn)‖∧n(V ∗) =
‖ιω(v1) ∧ ιω(v2) ∧ · · · ∧ ιω(vn)‖∧n(V ∗)

‖ε1 ∧ ε2 ∧ · · · ∧ εn‖∧n(V ∗)

= |detT |

=

∣∣∣∣ω∗ (ιω(v1) ∧ ιω(v2) ∧ · · · ∧ ιω(vn))

ω∗ (ε1 ∧ ε2 ∧ · · · ∧ εn)

∣∣∣∣
= |ω∗ (ιω(v1) ∧ ιω(v2) ∧ · · · ∧ ιω(vn))|

= |ω(v1 ∧ v2 ∧ · · · ∧ vn)|

= ‖v1 ∧ v2 ∧ · · · ∧ vn‖∧n(V ).

The last two equalities follow from the definition of ω∗ and (1.1.71.1.7). �

We state a technical result on the norms of n-vectors which is needed later. For the next lemma,

suppose V is an n-dimensional inner product space. Further, let ω ∈
∧n

(V ∗) be a volume form and

e ∈
∧n

(V ) the unit n-vector which is positively oriented with respect to the orientation induced by ω

(that is, ‖e‖∧n(V ) = 1 and ω(e) > 0). Notice that the index set I in the following lemma is slightly

different to our usage of it so far.

Lemma 1.1.19

Let {v1, v2, . . . , vN} ⊂ V be a collection of vectors for arbitrary N ∈ N. Suppose that for any strictly

increasing multi-index I ∈ I := {(i1, i2, . . . , in) | 1 ≤ i1 < i2 < . . . < in ≤ N} of length n the n-vectors

vi1 ∧vi2 ∧· · ·∧vin are pairwise consistently oriented. Let m ∈ {1, 2, . . . , n} and fix a strictly increasing
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multi-index J = (jm+1, jm+1, . . . , jn) of length n−m such that m ≤ jm+1 and jn ≤ N . Then∥∥∥∥∥∥∥∥
∑
I∈I

im<jm+1

vi1 ∧ · · · ∧ vim ∧ vjm+1
∧ · · · ∧ vjn

∥∥∥∥∥∥∥∥∧n(V )

=
∑
I∈I

im<jm+1

∥∥vi1 ∧ · · · ∧ vim ∧ vjm+1
∧ · · · ∧ vjn

∥∥∧n(V )
.

In particular, ∥∥∥∥∥∑
I∈I

vi1 ∧ vi2 ∧ · · · ∧ vin

∥∥∥∥∥∧n(V )

=
∑
I∈I
‖vi1 ∧ vi2 ∧ · · · ∧ vin‖∧n(V ). (1.1.12)

Proof: The second assertion follows from the first for m = n. If N < n then both sides of the

equation are zero (because I = ∅). Therefore, suppose N ≥ n. Since
∧n

(V ) is one-dimensional we

can write vi1 ∧ vi2 ∧ · · · ∧ vin = ci1i2...ine for some coefficents ci1i2...in ∈ R. All of the coefficients

ci1i2...in = ω(vi1 ∧ vi2 ∧ · · · ∧ vin)/ω(e) are either positive or negative for all I ∈ I because the n-

vectors vi1 ∧ vi2 ∧ · · · ∧ vin are consistently oriented. In other words, sgn (ci1i2...in) is constant for any

possible multi-index. Then

∑
I∈I

im<jm+1

‖ vi1 ∧ · · · ∧ vim ∧ vjm+1
∧ · · · ∧ vjn ‖∧n(V )

=
∑
I∈I

im<jm+1

∥∥ci1...im,jm+1...jne
∥∥∧n(V )

=
∑
I∈I

im<jm+1

|ci1...im,jm+1...jn |‖e‖∧n(V )

=
∑
I∈I

im<jm+1

|ci1...im,jm+1...jn | =

∣∣∣∣∣∣∣∣
∑
I∈I

im<jm+1

|ci1...im,jm+1...jn |

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∑
I∈I

im<jm+1

sgn
(
ci1...im,jm+1...jn

)︸ ︷︷ ︸
=±1, const

|ci1...im,jm+1...jn |

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
I∈I

im<jm+1

ci1...im,jm+1...jn

∣∣∣∣∣∣∣∣
and on the other hand∥∥∥∥∥∥∥∥

∑
I∈I

im<jm+1

vi1 ∧ · · · ∧ vim ∧ vjm+1
∧ · · · ∧ vjn

∥∥∥∥∧n(V )

=

∥∥∥∥∥∥∥∥
∑
I∈I

im<jm+1

ci1...im,jm+1...jne

∥∥∥∥∥∥∥∥∧n(V )

=

∣∣∣∣∣∣∣∣
∑
I∈I

im<jm+1

ci1...im,jm+1...jn

∣∣∣∣∣∣∣∣‖e‖∧n(V )
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=

∣∣∣∣∣∣∣∣
∑
I∈I

im<jm+1

ci1...im,jm+1...jn

∣∣∣∣∣∣∣∣. �

This section concludes with the special case n = 2 for the previous result.

Corollary 1.1.20

If dim (V ) = n = 2 in the setting of Lemma 1.1.191.1.19 then the formulae simplify to

∥∥∥∥∥
j−1∑
i=1

vi ∧ vj

∥∥∥∥∥∧2(V )

=

j−1∑
i=1

‖vi ∧ vj‖∧2(V )

for j = 2, 3, . . . , N and ∥∥∥∥∥∥
∑

1≤i<j≤N

vi ∧ vj

∥∥∥∥∥∥∧2(V )

=
∑

1≤i<j≤N

‖vi ∧ vj‖∧2(V ).
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1.2 Convex geometry

1.2 Convex geometry

The scope of this section is to introduce basic concepts of convex geometry. In particular, we define

polytopes – a special type of convex sets. Further, we describe the support function of a convex

set and state some results for the special case of polytopes. Subsequently, the duality between the

vertex and the half-space representation of polytopes is outlined. Further, we prove the Minkowski

inequality for convex bodies and use a geometric argument to establish a well-known explicit formula

for a specific mixed volume. Finally, we conclude this section with a result on the maxima of convex

functions on polytopes. The results in this section are borrowed from the textbooks of Bonnesen

and Fenchel [BF71BF71], Brøndsted [Brø83Brø83], Grünbaum [Grü03Grü03], Matoušek [Mat02Mat02], Rockafellar [Roc70Roc70]

and Thompson [Tho96Tho96, Chapter 0, Chapter 2]. Throughout the section (V, ‖·‖V ) will denote an

n-dimensional normed vector space.

1.2.1 Convex sets and polytopes

A non-empty subset C of the vector space V is said to be convex if λx + (1 − λ)y ∈ C whenever

x, y ∈ C and λ ∈ [0, 1].

The segment joining x and y is defined as the set {λx+ (1− λ)y | λ ∈ [0, 1]} and denoted as

[x, y]. Thus, as a more geometrical characterisation of the previous definition, a set C is convex if and

only if it contains all segments joining any two of its points.

Suppose A and B are convex sets. The Minkowski sum of A and B is

A+B := { a+ b | a ∈ A, b ∈ B }.

For any non-negative real number α, define further

αA := {αa | a ∈ A }.

If A = {a} is a singleton then we usually write a+B instead of {a}+B. Note that the decomposition

of a vector v ∈ A+B as a sum of vectors in A and B is, in general, not unique.

Lemma 1.2.1

Suppose A and B are convex sets and α ≥ 0 is a real number. Then αA+B is a convex set.

Proof: For i = 1, 2 let xi = αai + bi where ai ∈ A and bi ∈ B and t ∈ [0, 1]. Then

tx1 + (1− t)x2 = α(ta1 + (1− t)a2) + (tb1 + (1− t)b2)
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which is an element of αA+B because A and B are convex. �

Using induction we can easily generalise the previous result and show that arbitrary finite linear

combinations of convex sets are convex. Furthermore, the associativity and commutativity of the

vector operations in V translate to the respective properties for linear combinations of convex sets.

We can also show the following distributive law.

Lemma 1.2.2

Let α, β1, β2 ≥ 0 be non-negative real numbers and suppose A1, A2 and B ⊂ V are convex sets. Then

α(A1 +A2) = αA1 + αA2

(β1 + β2)B = β1B + β2B.

Proof: The first assertion follows from the distributive law on V since x ∈ α(A1 +A2) if and only

if there are ai ∈ Ai such that x = α(a1 + a2) = αa1 + αa2 which is an element of αA1 + αA2.

Similarly, if y ∈ (β1 + β2)B then y = (β1 + β2)b = β1b+ β2b and thus, y ∈ β1B + β2B. Conversely,

let y = β1b1 + β2b2 ∈ β1B + β2B. Because β1 and β2 are non-negative, the numbers β1

β1+β2
and β2

β1+β2

are non-negative and add to 1. Then the convexity of B implies β1

β1+β2
b1 + β2

β1+β2
b2 ∈ B and thus

y = β1b1 + β2b2 = (β1 + β2)

(
β1

β1 + β2
b1 +

β2

β1 + β2
b2

)
∈ (β1 + β2)B. �

The reason we defined αA only for non-negative scalars is precisely because of this distributive

law which only applies to non-negative scalars. Also, for many of the sets that we will consider in

Chapter 22, multiplication by a negative scalar will be irrelevant because they will be symmetric in the

following sense.

A set A is symmetric with respect to the origin 0 ∈ V if (−1)A = {−a | a ∈ A} = A.

Henceforth, if we use the adjective “symmetric” it always means symmetric with respect to the origin.

We can see as follows that any intersection of convex sets is convex. If x and y are elements of all

the members of the intersection, so is the segment joining x and y because each of the sets is convex.

But then the line segment already is contained in the intersection itself. Therefore it is fitting to

consider the intersection of the family of convex sets containing a given (not necessarily convex) set A.

By construction, this is the smallest convex set containing A. It is called the convex hull of A and

denoted by conv (A). Due to Carathéodory [DGK63DGK63, pp.103+115] the convex hull of a set A ⊂ V is
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characterised by

conv (A) =

{
n+1∑
i=1

λiai

∣∣∣∣∣ ai ∈ A, λi ≥ 0,

n+1∑
i=1

λi = 1

}
. (1.2.13)

One can show that the convex hull operation preserves inclusions, in other words conv (X) ⊂ conv (Y )

if X ⊂ Y .

A linear subspace W ⊂ V is trivially convex. Clearly, a singleton {x} is convex as well. Thus, any

translate of a linear subspace, that is, x+W is convex. Such a set is an affine subspace of V . Its

dimension is defined as the dimension of the subspace of which it is a translate. The dimension of

a convex set is the dimension of the affine subspace of smallest dimension containing the set. For

example, the dimension of a cube is 3, the dimension of a triangle 2 and the dimension of a point is 0.

Since any convex set is contained in the linear space V , the dimension of a convex set is bounded

above by the dimension n of the ambient space V .

A convex subset E of a convex set A is said to be an extreme subset of A if, whenever x ∈ E

and x = λa1 + (1− λ)a2 for a1, a2 ∈ A and λ ∈ (0, 1), then a1, a2 ∈ E already.

A special type of convex sets, the “polytopes”, will occupy much of our focus in this section and

the application later. To avoid unnecessary clutter in explicit calculations and formulae, we make

the following construction. Suppose {a1, a2, . . . , aN} and {b1, b2, . . . , bM} are two non-empty sets

of finitely many points in V . Any such two sets are in polytopial relation to one another if and

only if conv ({a1, a2, . . . , aN}) = conv ({b1, b2, . . . , bM}). Clearly, this defines an equivalence relation

because equality of sets is one such correspondence. The equivalence class
[
{a1, a2, . . . , aN}

]
poly

can

be well-ordered when ordering the number of points of each of its elements with the usual order ≤ of

the natural numbers N. For each equivalence class
[
{a1, a2, . . . , aN}

]
poly

the well-ordering principle

then yields the existence of an element with a minimal number of points.

A polytope is the convex hull of the minimal element in the equivalence class of a non-empty set

of finitely many points in V , that is,

AN := [a1a2 . . . aN ] := conv ({a1, a2, . . . , aN}),

where N is minimal as described above. The points a1, a2, . . . , aN are the vertices of A. In the

special case of dimension n = 2, a polytope is called a polygon . If there is no need for the number of

indices the index N will be omitted.

If not explicitly stated otherwise a polytope in V is considered as full dimensional, that is, its dimension

is n. This can always be achieved by restricting the point of view to the affine subspace containing
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the polytope. In doing so, the number of vertices N is bounded below by n+ 1. This can be seen

through (1.2.131.2.13).

The extreme subsets of a polytope are called the faces or j-faces if their dimension is j. The

(n − 1)-dimensional faces of a polytope are called facets. Note that the 0-dimensional faces of a

polytope are its vertices. One can show that the faces of a polytope are polytopes themselves ([Brø83Brø83,

Theorem 7.3, p. 45]).

Lemma 1.2.3

A polytope is a convex, closed and bounded (and thus compact) set.

Proof: Let A = [a1a2 . . . aN ] be a polytope. By definition, a polytope is convex as the convex

hull of its vertices. Note that a polytope A is contained in the ball of radius maxi=1,2,...,N ‖ai‖V
and thus bounded. Let (xk)k∈N ⊂ A be a sequence which converges to an arbitrary but fixed

x ∈ V in the norm topology of V . We need to show that x ∈ A. Any of the points xk can be

expressed as a convex combination of the vertices, that is, xk =
∑N
i=1 λ

(k)
i ai where

∑N
i=1 λ

(k)
i = 1

and λ
(k)
i ∈ [0, 1]. Because [0, 1] is a compact set there is a subsequence, say (ki1)i1∈N ⊂ (k)k∈N,

such that
(
λ

(ki1 )
1

)
i1∈N

converges to some λ1 ∈ [0, 1]. But then there is another subsequence of

this subsequence, say (ki2)i2∈N ⊂ (ki1)i1∈N ⊂ (k)k∈N, such that both
(
λ

(ki2 )
1

)
i1∈N

and
(
λ

(ki2 )
2

)
i1∈N

converge to some λ1 and λ2 ∈ [0, 1] respectively. Iterating this process N times and renaming the

final subsequence yields the convergence of
(
λ

(k)
i

)
k∈N

to λi ∈ [0, 1] for i = 1, 2, . . . , N . Further,∑N
i=1 λi =

∑N
i=1 limk→∞ λ

(k)
i = limk→∞

∑N
i=1 λ

(k)
i = 1. Define y :=

∑N
i=1 λiai ∈ A. Then the

triangle inequality for the norm on V implies

‖y − xk‖V ≤
N∑
i=1

∣∣∣λ(k)
i − λi

∣∣∣ ‖ai‖V −−−−→
k→∞

0

and

‖y − x‖V ≤ ‖y − xk‖V + ‖xk − x‖V −−−−→
k→∞

0.

Thus, x = limk→∞ xk = y ∈ A. �

1.2.2 Support functions

Consider an (n− 1)-dimensional subspace W of V with basis {w1, w2, . . . , wn−1}. Extend this to a

basis {w1, w2, . . . , wn−1, v} of the entire space V and define a linear form f : V → R on this basis

by f(wi) = 0 for i = 1, 2, . . . , n− 1 and f(v) = 1. Then ker (f) = W . Clearly, this particular linear
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form f is not unique – a different choice of basis yields a different linear form. Conversely, if f is a

non-zero element of the dual space V ∗ then its image is all of R, because for a vector v /∈ ker (f) it

holds that f(αv) = αf(v) for all α ∈ R. The rank-nullity-theorem then states that the kernel of f is

of dimension dim (ker (f)) = dim (V )− dim (im (f)) = n− 1. Therefore, it is appropriate to introduce

the following notion.

A translate of the kernel of a non-zero linear form f ∈ V ∗ is called a hyperplane and the linear

form that generates it is a normal to this hyperplane. If ‖f‖V ∗ = 1 then f is called a unit normal .

Note that the normal to a hyperplane is, in general, not unique.

Remark:

Suppose V is equipped with an inner product. Then the notion of normality introduced above coincides

with the usual geometrical understanding of normality. Consider a non-zero linear form f ∈ V ∗.

Through the Riesz representation theorem f corresponds to a vector n̄ ∈ V by f(w) = 〈w, n̄〉V for all

w ∈ V . A vector is normal to a translate x+W of a subspace in the usual sense if it is orthogonal to

all vectors in the subspace W . But then

W = {w ∈ V | 〈w, n̄〉V = 0} = {w ∈ V | f(w) = 0} = ker (f),

that is, W + x is in fact a hyperplane as defined above. In this section however, we will not assume

that V is equipped with an inner product because the results hold in all finite-dimensional normed

spaces – which is the reason why we introduced the notion of normality for linear forms and not for

vectors.

A hyperplane H can be described as a level set of its normal f because

H = x+ ker (f) = {x+ v′ | v′ ∈ ker (f)}

= {v = x+ v′ | v′ ∈ ker (f), f(v) = f(v′) + f(x) = f(x)}

= {v ∈ V | f(v) = α} =: Hα(f)

where α := f(x). Given a non-zero linear form f we denote the family of hyperplanes that f is

normal to by Hα(f) where α ∈ R. Note ker (f) = H0(f). Each hyperplane Hα(f) bounds the two

closed half-spaces H+
α (f) := {v ∈ V | f(v) ≥ α} and H−α (f) := {v ∈ V | f(v) ≤ α}. Both of these

half-spaces are convex because f is linear and therefore any intersection of closed half-spaces is a

closed convex set. Using the Hahn-Banach theorem and its geometric variants, one can prove the

following partial converse.
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Proposition 1.2.4 ([Tho96Tho96, Theorem 2.1.8, p. 48])

Every closed convex set is the intersection of those closed half-spaces which contain it.

A hyperplane H := Hα(f) is said to be a supporting hyperplane for a closed convex set K, if

K ∩ H 6= ∅ and either K ⊂ H+
α (f) or K ⊂ H−α (f). In this case we say that the linear form f

supports the convex set K at each point in K ∩H. Note that H+
−α(−f) = H−α (f) and thus, we may

restrict our point of view to hyperplanes of the form H−α (f). If H−α (f) is a supporting half-space for

K then 1
‖f‖V ∗

f is called an outer unit normal .

With all this notation at hand, we can introduce an important mapping corresponding to a given

bounded, closed and convex set K. The function

hK : V ∗ → R, f 7→ sup
x∈K

f(x)

is called the support function of K. This function has the following properties.

Lemma 1.2.5

(i) The support function is sublinear on V ∗, that is,

hK(αf) = αhK(f), for α ≥ 0

hK(f + g) ≤ hK(f) + hK(g).

(ii) The support function respects Minkowski sums, that is,

hαK = αhK , for α ≥ 0

hK+K′ = hK + hK′ .

(iii) If 0 ∈ K then hK(f) ≥ 0 and if 0 is an interior point of K then hK(f) > 0 for all f 6= 0.

(iv) If K is symmetric then hK(f) = hK(−f) and hK(f) = supx∈K |f(x)|.

(v) If K is the unit ball of V then hK = ‖·‖V ∗ .

(vi) If K ⊂ K ′ then hK ≤ hK′ .

Proof: Part (i) follows from the definition of hK . For part (ii) calculate

hαK(f) = sup
x∈αK

f(x) = sup
y∈K

f(αy) = α sup
y∈K

f(y) = αhK(f)
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and

hK+K′(f) = sup
x∈K+K′

f(x) = sup
y∈K,y′∈K′

f(y + y′)

= sup
y∈K,y′∈K′

f(y) + f(y′) = sup
y∈K

f(y) + sup
y′∈K′

f(y′)

= hK(f) + hK′(f)

for f ∈ V ∗ and α ≥ 0.

To prove part (iii), suppose that hK(f) = supy∈K f(y) < 0 for some f ∈ V ∗. Since 0 ∈ K, we have

the contradiction

0 = f(0) ≤ sup
y∈K

f(y) < 0.

Let 0 be an interior point of K and suppose further there is f ∈ V ∗ with hK(f) = supx∈K f(x) = 0,

that is, f
∣∣
K
≡ 0. Since 0 is an interior point there is a radius ε > 0 such that the norm ball Bε(0)

centered at 0 is contained in K. Moreover, f
∣∣
Bε(0)

≡ 0. This already implies f ≡ 0 since any

0 6= x ∈ V can be scaled by the factor ε
2‖x‖V

such that y := ε
2‖x‖V

x ∈ Bε(0). The linearity of f then

yields f(x) =
2‖x‖V
ε f(y) = 0. For part (iv), note that if K is symmetric (that is, K = (−1)K) then

hK(−f) = sup
x∈K

(−f)(x) = sup
x∈K

f(−x)

= sup
−x∈K

f(x) = sup
x∈(−1)K

f(x) = sup
x∈K

f(x)

= hK(f).

For part (v) just note that 0 ∈ K. Part (iii) and the definition of the dual norm immediately yield the

claim since hK(f) = supx∈K |f(x)| = ‖f‖V ∗ . Part (vi) is clear because supx∈K f(x) ≤ supx∈K′ f(x)

if K ⊂ K ′. �

Since hK is a positively homogeneous mapping its image is completely determined by the image of

linear forms of unit length. As mentioned earlier any closed convex set is contained in the intersection

of its supporting half-spaces. Although very important this is merely a qualitative statement. However,

the next result shows that the support function hK completely describes these supporting half-spaces

and provides a geometrical meaning to its value at a unit length linear form.
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ker (f) = H0(f)

Hα(f)

x

0K

Figure 1.1: Distance of 0 ∈ K to Hα(f)

Proposition 1.2.6

Let f ∈ V ∗ be a non-zero linear form. Suppose K is a closed bounded and convex set which contains

the origin as an interior point. Define α := hK(f) > 0. Then the hyperplane Hα(f) is a supporting

hyperplane for K and K is contained in the half-space H−α (f) = {v ∈ V | f(v) ≤ hK(f)} (that is,

f is an outer normal to Hα(f)). In particular, hK
(

f
‖f‖V ∗

)
gives the distance of the origin to the

hyperplane Hα(f) = {v ∈ V | f(v) = hK(f)}, that is,

hK

(
f

‖f‖V ∗

)
= dist(0, Hα(f)). (1.2.14)

Proof: Since K is compact as a closed and bounded set in V and f is continuous, there is x ∈ K

such that f(x) = supy∈K f(y) = hK(f) = α. Then x ∈ K ∩Hα(f). Further, K ⊂ H−α (f) because

f(z) ≤ supy∈K f(y) = hK(f) for all z ∈ K. Hence, Hα(f) is a supporting hyperplane for K.

Note that by the linearity of f , 1
tHα(f) = Htα(f) for all t 6= 0. Therefore, the hyperplane Hα(f)

parametrises the open half-space H+
0 (f) which is bounded by the kernel of f . Similarly, the hyperplane

H−α(f) parametrises the open half-space H−0 (f).

Then we calculate

dist(0, Hα(f)) = inf
z∈Hα(f)

‖z‖V = α inf
z∈Hα(f)

(
α

‖z‖V

)−1

= α

(
sup

z∈Hα(f)

α

‖z‖V

)−1

= hK(f)

(
sup

z∈Hα(f)

f(z)

‖z‖V

)−1

= hK(f)

(
sup

z∈Hα(f)

f

(
z

‖z‖V

))−1

.
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The expression z
‖z‖V

does not change its value if z is scaled by an arbitrary positive factor t > 0.

Thus, we can rewrite the supremum,

sup
z∈Hα(f)
t>0

f

(
z
t∥∥ z
t

∥∥
V

)
= sup
z∈ 1

tHα(f)
t>0

f

(
z

‖z‖V

)
= sup
z∈Htα(f)

t>0

f

(
z

‖z‖V

)
= sup
z∈V,f(z)>0

f

(
z

‖z‖V

)
.

Notice that

sup
z∈V,f(z)>0

f

(
z

‖z‖V

)
= sup
z∈V,f(z)>0

−f
(
−z
‖−z‖V

)
= sup
z∈V,f(z)<0

−f
(

z

‖z‖V

)

which implies

sup
z∈V,f(z)>0

f

(
z

‖z‖V

)
= sup
z∈V,f(z)6=0

∣∣∣∣f ( z

‖z‖V

)∣∣∣∣ .
This finally yields

dist(0, Hα(f)) = hK(f)

(
sup

z∈V,f(z) 6=0

∣∣∣∣f ( z

‖z‖V

)∣∣∣∣
)−1

= hK(f)

(
sup

z∈V,z 6=0

∣∣∣∣f ( z

‖z‖V

)∣∣∣∣
)−1

= hK(f)
1

‖f‖V ∗
= hK

(
f

‖f‖V ∗

)
. �

The previous result will be used repeatedly in the proofs of explicit calculations on polytopes carried

out in Section 1.2.51.2.5.

1.2.3 Polyhedra and polarity of convex sets

Recall that if 0 ∈ K is an interior point then hK(f) > 0 if f 6= 0. Therefore,

H−α (f) = {v ∈ V | f(v) ≤ hK(f)} =

{
v ∈ V

∣∣∣∣ 1

hK(f)
f(v) ≤ 1

}
= H−1 (f̃)

where f̃ := 1
hK(f)f . Thus, we may restrict our point of view further to half-spaces described by H−1 (f).

By the previous proposition, we can then describe a closed bounded and convex set which contains

the origin as an interior point by

K =
⋂
f∈V ∗

H−hK(f) (f) =
⋂
f∈V ∗

H−1

(
1

hK(f)
f

)
. (1.2.15)
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A polyhedral set P is the intersection of a finite number of half-spaces, that is,

P =

M⋂
i=1

H−αi(f
i)

for non-zero linear forms f i ∈ V ∗ and scalars αi ∈ R, i = 1, 2, . . . ,M . We assume here that the number

M is minimal in the sense that none of the half-spaces H−αj (f
j) may be omitted in the intersection

above (Brøndsted calls this an “irreducible” representation, see [Brø83Brø83, p. 52]). One of the main

theorems in convexity theory of polytopes is the following statement.

Theorem 1.2.7 ([Brø83Brø83, Chapter 9, Theorem 9.2])

A non-empty subset P of V is a polytope if and only if it is a bounded polyhedral set.

This theorem gives two representations of a polytope – the vertex representation on the one hand

and the half-space representation on the other. An elegant proof, using only elementary arguments,

can be found in [Mat02Mat02, pp. 84–85]. There is a wide range of results on the combinatorial properties

of such sets – the text books [Brø83Brø83] and [Grü03Grü03] provide good references for this topic. Regarding

combinatorics of polytopes, let us only note here that a symmetric polytope has an even number

of vertices and an even number of facets, which can be deduced by using the vertex and half-space

representation respectively.

For the application in the next chapter we need another concept that plays an important role in

convexity theory. For each closed convex set K we can define its polar set K◦ in the dual space V ∗

by

K◦ := {f ∈ V ∗ | f(x) ≤ 1 for all x ∈ K} (1.2.16)

=
⋂
x∈K
{f ∈ V ∗ | f(x) ≤ 1}.

It is clear that the polar set is non-empty since 0 ∈ K◦. The polar operation reverses set inclusions,

for if K1 ⊂ K2 then K◦2 ⊂ K◦1 . Moreover, the next properties hold to be true.

Lemma 1.2.8

The polar set K◦ can be described through the support function of K as K◦ = {f ∈ V ∗ | hK(f) ≤ 1}.

If B is the unit ball in V then B◦ is the unit ball in V ∗. The polar set is a convex and closed set. If

K is bounded then 0 ∈ V ∗ is an interior point of K◦. Furthermore, if 0 ∈ V is an interior point of K

then K◦ is bounded.

Proof: Let f ∈ K◦, that is, f(x) ≤ 1 for all x ∈ K. But then this also holds for the least upper
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bound, so hK(f) = supx∈K f(x) ≤ 1. Conversely, if f ∈ V ∗ such that hK(f) = supx∈K f(x) ≤ 1, then

f(x) ≤ 1 for all x ∈ K, that is, f ∈ K◦. If B is the unit ball of V then part (v) of Lemma 1.2.51.2.5 yields

B◦ = {f ∈ V ∗ | hB(f) ≤ 1} = {f ∈ V ∗ | ‖f‖V ∗ ≤ 1} .

For any convex combination of elements of K◦

(
tf + (1− t)g

)
(x) = tf(x) + (1− t)g(x) ≤ t+ (1− t) = 1

for all x ∈ K, therefore K◦ is convex. Further, let (fk)k∈N ⊂ K◦ and fk −−−−→
k→∞

f ∈ V ∗. Then for all

x ∈ K

f(x) = f(x)− fk(x) + fk(x)

≤ ‖f − fk‖V ∗ + fk(x)

≤ ‖f − fk‖V ∗ + 1 −−−−→
k→∞

1.

Thus, f ∈ K◦ and K◦ is closed. If BR(0) = RB1(0) = RB is the norm ball in V of radius R > 0

centered at the origin, note that by Lemma 1.2.51.2.5 (v)

hBR(0)(f) = RhB(f) = R‖f‖V ∗

and because B◦ is the unit ball in V ∗ it follows that

(BR(0))
◦

=
{
f ∈ V ∗

∣∣ hBR(0)(f) ≤ 1
}

= {f ∈ V ∗ | R‖f‖V ∗ ≤ 1}

=
{
f ∈ V ∗

∣∣ ‖f‖V ∗ ≤ R−1
}

= R−1B◦ =: B∗R−1(0).

In other words, (BR(0))
◦ is the norm ball in the dual space V ∗ of radius R−1 centered at the origin.

If K is bounded then there is a radius R > 0 such that K ⊂ BR(0). As the polar operation reverses

inclusions, we have B∗R−1(0) ⊂ K◦, that is, 0 is an interior point of K◦. Conversely, if BR(0) ⊂ K for

some R > 0 the same argumentation yields K◦ ⊂ B∗R−1(0), that is, K◦ is bounded. �

Proposition 1.2.9

Let P be a polytope which contains the origin as an interior point. Then P ◦ is a polytope.

41



Chapter 1 Preliminaries of multilinear algebra, convex geometry and differential geometry

Proof: Suppose P = conv (a1, a2, . . . , aN ). Then P is closed bounded and convex due to Lemma 1.2.31.2.3.

By Lemma 1.2.81.2.8 we know that P ◦ is also closed, convex and contains 0 ∈ V ∗ as an interior point. In

addition,

P ◦ =
⋂
x∈P
{f ∈ V ∗ | f(x) ≤ 1} =

N⋂
i=1

{f ∈ V ∗ | f(ai) ≤ 1}.

The second equality follows from the fact that ai ∈ P , so f(ai) ≤ 1 for f ∈ P ◦. Conversely,

suppose f ∈ V ∗ such that f(ai) ≤ 1 for all i = 1, 2, . . . , N . We then have f(x) = f
(∑N

i=1 λiai

)
=∑N

i=1 λif(ai) ≤
∑N
i=1 λi = 1 for all x ∈ P , that is, f ∈ P ◦.

For any normed space the canonical mapping Φ: V → V ∗∗, Φ(v)(f) := f(v) is linear and preserves

the norm, that is, ‖Φ(v)‖V ∗∗ = ‖v‖V (see [Wer00Wer00, Satz III.3.1, p. 105]). This implies that Φ is

injective, for if Φ(v) = 0 then v must be zero. Since V and V ∗ and V ∗∗ = (V ∗)∗ are all vector

spaces of the same dimension n, the map Φ is already surjective by the rank-nullity theorem because

dim (im (Φ)) = dim (V )− dim (ker (Φ)) = n− 0 = n. Thus,

{f ∈ V ∗ | f(ai) ≤ 1} = {f ∈ V ∗ | Φ(ai)(f) ≤ 1} = H−1 (Φ(ai))

is a half-space in V ∗, whence P ◦ is a polyhedral set as the intersection of those finitely many half-spaces.

Furthermore, because P contains the origin as an interior point, the polar set P ◦ is bounded due to

Lemma 1.2.81.2.8. By Theorem 1.2.71.2.7, P ◦ then is a polytope. �

More precisely (or rather “conversely” in terms of vertex and half-space representations) the following

statement holds.

Lemma 1.2.10 ([Grü03Grü03, Exercise 3.4.7, p. 49] or [Mat02Mat02, Exercise 5.1.6 (b), p. 81])

If the convex polytope P (containing the origin as an interior point) is given via its half-space

representation as

P =

M⋂
i=1

{v ∈ V | f i(v) ≤ 1}

where f i ∈ V ∗ for i = 1, 2, . . . ,M then the polar set is given via the vertex representation

P ◦ = conv
(
f1, f2, . . . , fM

)
.

Proof: Define Q := conv
(
f1, f2, . . . , fM

)
⊂ V ∗. The set Q◦ = {ṽ ∈ V ∗∗ | ṽ(f) ≤ 1 for all f ∈ Q} ⊂

V ∗∗ is its polar set. We will show Q◦ = P . Referring to the previous proof, recall the canonical
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isomorphism Φ: V → V ∗∗ where Φ(v)(f) := f(v). Using this identification, we consider Q◦ to be a

subset of V and

Q◦ = {v ∈ V | f(v) ≤ 1 for all f ∈ Q} =
⋂
f∈Q

{v ∈ V | f(v) ≤ 1}.

Suppose v ∈ Q◦, then we have in particular f i ∈ Q for i = 1, 2, . . . ,M so that f i(v) ≤ 1. Conversely,

suppose v ∈ V so that f i(v) ≤ 1 for all i = 1, 2, . . . ,M . Then for all f ∈ Q we have f(v) =(∑N
i=1 λif

i
)

(v) =
∑N
i=1 λif

i(v) ≤
∑N
i=1 λi = 1. Thus, the last identity can be rewritten as

Q◦ =

M⋂
i=1

{v ∈ V | f i(v) ≤ 1} = P.

By taking the polar yet again, this implies P ◦ = Q◦◦. (It is understood that this equality sign

refers to the identification of V ∗ with (V ∗)
∗∗ via the mapping Φ∗ : V ∗ → (V ∗)

∗∗
,Φ∗(v)(f) = f(v).)

Furthermore, the polytope Q is bounded (Lemma 1.2.31.2.3) so that by Lemma 1.2.81.2.8 the set Q◦ contains

the origin as an interior point and is closed. Then Q◦◦ = Q (see [Tho96Tho96, Theorem 2.2.6, p. 50]) which

proves the claim – again it is understood that the equality sign refers to the identification of V ∗ with

V ∗∗∗ via the mapping Φ∗. �

Note that the number of facets and vertices of a polytope and its polar set interchange their roles. This

is one example of duality in the theory of convex polytopes and gives rise to the so-called “face-lattice”

(see [Brø83Brø83, Chapter 1, §5, p. 29f]).

1.2.4 Mixed volume and the Minkowski inequality

We introduce a quantity that relates a collection of convex sets with each other – the mixed volume.

For the application in Chapter 22 we prove the Minkowski inequality for convex bodies.

A convex body is a compact, convex subset of V with non-empty interior. The collection of all

convex bodies in V is denoted by Cb = Cb(V ). In Lemma 1.2.31.2.3 we have seen that any full-dimensional

polytope is a convex body. We need full-dimensionality here to ascertain a non-empty interior.

To motivate the notion of mixed volume, the following observation is useful. Using the homogeneity

of the Hausdorff measure on V , one sees that the measure of a scalar multiple α = α1 + . . .+ αk of a

set K is

Hn (α1K + . . .+ αkK) = (α1 + . . .+ αk)
nHn (K) =

 k∑
i1,...,in=1

αi1 . . . αin

Hn (K) ,
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that is, Hn (α1K + . . .+ αkK) is a homogeneous polynomial of degree n in the coefficients αi. In

greater generality, one can show that this holds for a non-negative linear combination of convex bodies.

In particular, for any collection of convex bodies {K1, . . . ,Kk} ⊂ V and non-negative coefficients

αi ≥ 0 the map (α1, . . . , αk) 7→ Hn (α1K1 + . . .+ αkKk) is a homogeneous polynomial of degree n

(see [Tho96Tho96, Theorem 2.3.6, p. 55]). Hence, it can be expressed as

Hn (α1K1 + . . .+ αkKk) =

k∑
i1,...,in=1

V (Ki1 , . . . ,Kin)αi1 . . . αin (1.2.17)

where the coefficient term V (Ki1 , . . . ,Kin) is symmetric in its arguments (because the Minkowski

sum in the left hand side is commutative) and is called the mixed volume of the convex bodies

Ki1 , . . . ,Kin . Note that the mixed volume is always a function of n arguments – the dimension of

the ambient space V – independent of the length of the linear combination. By inspection, we can

see V (K, . . . ,K) = Hn (K). Furthermore, if any of the sets Ki is translated linearly by some x ∈ V

the invariance of Hausdorff measure (on the left hand side of (1.2.171.2.17)) under translations implies

that the mixed volume (on the right hand side of (1.2.171.2.17)) is invariant under translations of any of

its arguments. The symmetry of mixed volume allows to reorder and collect like terms in the above

polynomial expression. There are
(

n
j1,...,jk

)
:=
(
n
j1

)(
n−j1
j2

)
· · ·
(
n−j1−...−jk−1

jk

)
terms such that j1 of the

n indices i1, . . . , in are equal to 1, j2 of the remaining n− j1 indices are equal to 2, etc. The mixed

volume then only depends on the new indices j1, . . . , jk and will be denoted by

V (K1[j1], . . . ,Kk[jk]) := V (K1,K1, . . . ,K1,K2,K2, . . . ,K2, . . . ,Kk,Kk, . . . ,Kk)

where Kl appears jl times. Thus, the polynomial expression can be rewritten as

Hn (α1K1 + . . .+ αkKk) =
∑

j1+...+jk=n

(
n

j1, . . . , jk

)
V (K1[j1], . . . ,Kk[jk])αj11 . . . αjkk .

For the Minkowski sum sK + tK ′ of two convex bodies K and K ′ this formula becomes

Hn (sK + tK ′) =

n∑
j=0

(
n

j

)
V (K[n− j],K ′[j])sn−jtj . (1.2.18)

If s = 1 in the last expression, we conclude the following formula.
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Corollary 1.2.11

The mixed volume of K[n− 1] and K ′ = K ′[1] can be calculated by

V (K[n− 1],K ′) =
1

n
lim
t→0

Hn (K + tK ′)−Hn (K)

t
. (1.2.19)

There are several inequalities that relate the different mixed volumes of a collection of convex

bodies. An important one is the Brunn-Minkowski inequality (see [Tho96Tho96, Theorem 2.3.5, p. 55])

which will be included in the proof below. We will need the following consequence of this inequality

in the application in Chapter 22.

Proposition 1.2.12 (Minkowski inequality for convex bodies, [BF71BF71, §49, p. 91])

If K and K ′ are convex bodies then

(
V (K[n− 1],K ′)

)n ≥ (Hn (K)
)n−1Hn (K ′) .

Proof: The Brunn-Minkowski inequality states that

(
Hn ((1− α)K + αK ′)

) 1
n ≥ (1− α)

(
Hn (K)

) 1
n + α

(
Hn (K ′)

) 1
n .

In other words, the map Cb → R,K 7→
(
Hn (K)

) 1
n is concave. Then for fixed convex bodies K,K ′ ⊂ V

the map [0, 1]→ R, α 7→
(
Hn ((1− α)K + αK ′)

) 1
n is a concave function. Define the function

Φ: [0, 1]→ R, α 7→
(
Hn ((1− α)K + αK ′)

) 1
n − (1− α)

(
Hn (K)

) 1
n − α

(
Hn (K ′)

) 1
n

which is also concave since the additional terms are linear in α. Note that Φ(0) =
(
Hn (K)

) 1
n −(

Hn (K)
) 1
n = 0 and similarly Φ(1) = 0. Note further that Φ is a polynomial function in the variable α

due to expression (1.2.181.2.18) and is thus differentiable on (0, 1) and the one-sided limits for the difference

quotient at α = 0 and α = 1 exist. The concavity and continuity of Φ imply that its (right hand)

derivative at α = 0 must be non-negative. We will shortly see that this implies the claim but first let

us calculate the derivative of Hn ((1− α)K + αK ′) at α = 0. Equation (1.2.181.2.18) yields

d

dα

∣∣∣∣
α=0

(
Hn ((1− α)K + αK ′)

)
=

d

dα

∣∣∣∣
α=0

 n∑
j=0

(
n

j

)
V (K[n− j],K ′[j])(1− α)n−jαj


=

n∑
j=0

(
n

j

)
V (K[n− j],K ′[j]) d

dα

∣∣∣∣
α=0

(
(1− α)n−jαj

)
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= V (K[n],K ′[0])
d

dα

∣∣∣∣
α=0

(1− α)n + nV (K[n− 1],K ′[1])
d

dα

∣∣∣∣
α=0

(
(1− α)n−1α

)
+

n∑
j=2

(
n

j

)
V (K[n− j],K ′[j]) d

dα

∣∣∣∣
α=0

(
(1− α)n−jαj

)
=− nHn (K) + nV (K[n− 1],K ′[1])

+

n∑
j=2

(
n

j

)
V (K[n− j],K ′[j])

(
jαj−1(1− α)n−j − (n− j)αj(1− α)n−j−1

)∣∣∣
α=0

=n
(

V (K[n− 1],K ′[1])−Hn (K)
)
. (1.2.20)

The last equality uses the fact that all summands with index j ≥ 2 contain a power of α which

vanishes at 0. Proceeding, one gets

dΦ

dα

∣∣∣∣
α=0

=
d

dα

∣∣∣∣
α=0

[(
Hn ((1− α)K + αK ′)

) 1
n − (1− α)

(
Hn (K)

) 1
n − α

(
Hn (K ′)

) 1
n

]
=

1

n

(
Hn (K)

) 1
n−1 d

dα

∣∣∣∣
α=0

[
Hn ((1− α)K + αK ′)

]
+
(
Hn (K)

) 1
n −

(
Hn (K ′)

) 1
n .

Using (1.2.201.2.20), the last statement can be rewritten as

dΦ

dα

∣∣∣∣
α=0

=
(
Hn (K)

) 1
n−1

[
V (K[n− 1],K ′[1])−Hn (K)

]
+
(
Hn (K)

) 1
n −

(
Hn (K ′)

) 1
n

=
(
Hn (K)

)−n−1
n V (K[n− 1],K ′[1])−

(
Hn (K ′)

) 1
n

=
(
Hn (K)

)−n−1
n

{
V (K[n− 1],K ′[1])−

(
Hn (K)

)n−1
n
(
Hn (K ′)

) 1
n

}
.

Thus, the non-negativity of dΦ
dα

∣∣
α=0

implies the claim. �

1.2.5 An explicit formula for the mixed volume of a polytope and a convex set

There is an intuitive geometrical way of calculating the Minkowski sum of a polytope A and a convex

body K. First, consider the set K ′ := K − k where k is an interior point of K. Secondly, attach the

set K ′ to each vertex of A and take the convex hull (see Figure 1.21.2 (a)). Lastly, translate by the

vector k, that is, A+K =
(
A+ (K − k)

)
+ k.

Lemma 1.2.13

Suppose AN = A is a polytope and K a convex body in V and k an interior point of K. Their
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Minkowski sum is given by

A+K = conv

(
N⋃
i=1

(ai +K ′)

)
+ k

where K ′ := K − k.

Proof: Without loss of generality we may assume the origin is an interior point of K and k = 0.

For the sake of brevity let C := conv
(⋃N

i=1 (ai +K)
)
. Clearly, C ⊂ A + K, for if c ∈ C then

c =
∑n+1
l=1 λl(ail + kl) where

∑n+1
l=1 λl = 1, kl ∈ K and ail ∈ {a1, a2, . . . , aN} for l = 1, 2, . . . , N . Since

both A and K are convex c =
∑n+1
l=1 λlail +

∑n+1
l=1 λlkl ∈ A+K.

Conversely, let c ∈ A + K. Since each point in the polytope A is a convex combination of the

vertices a1, a2, . . . , aN , it follows that

c =

N∑
i=1

λiai + k =

N∑
i=1

λi(ai + k) ∈ C

where
∑N
i=1 λi = 1. �

As a motivation for the next result consider a polytope A ⊂ V with N facets Fi. Recall that facets

are the (n− 1)-dimensional extreme subsets of A. Without loss of generality, suppose A contains the

origin 0 ∈ V as an interior point. An intuitive way of calculating its volume is the following geometric

sequence of steps. First, one triangulates the polytope by connecting each of its facets with the origin

which creates N pyramids Pi = conv (Fi ∪ {0}). Secondly, one adds up the volume of each pyramid.

Lastly, one recalls that the volume of a pyramid is simply the (n− 1)-dimensional volume of the “base”

times its “height” divided by the dimension n. (This can be proven by using Cavalieri’s principle, see

e.g. [For09For09, §5, Satz 3, p. 49].) To put this into more mathematical terms, intuitively, the volume of

A is

Hn(A) =

N∑
i=1

Hn(Pi) =
1

n

N∑
i=1

Hn−1(Fi)hA
(
f i
)

where f i denotes the outer unit normal (see p. 3636) of the facet Fi and hA is the support function of

A. Due to Proposition 1.2.61.2.6 the value hA(f i) is the distance of the affine subspace containing the

facet Fi to the origin (and so the height of the pyramid Pi).

With the help of Corollary 1.2.111.2.11 the mixed volume of a polytope and a convex body can be

calculated geometrically. This leads to a formula very similar to the one which we just motivated.
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Lemma 1.2.14 ([BF71BF71, §29, Formula (3), p. 41ff])

Let A be a polytope with facets F1, F2, . . . , FN , K a convex body in V and k an arbitrary interior

point of K. Suppose f i is the outer unit normal to the facet Fi and hK is the support function of K.

The mixed volume of A,A, . . . , A︸ ︷︷ ︸
(n−1)−times

and K is given by

V (A[n− 1],K) =
1

n

N∑
i=1

Hn−1(Fi)hK−k
(
f i
)
. (1.2.21)

Proof: Since mixed volume is invariant under translation of any of its arguments, the left hand side

V (A[n− 1],K) equals V (A[n− 1],K − k). Without loss of generality, we thereby may assume K

contains the origin of V and k = 0. Further suppose n ≥ 2, for if n = 1 then A and K = [k1, k2] are

segments in the one-dimensional vector space V . In addition, N = 2 because the number of vertices

is minimal by definition of a polytope and, in fact, the facets of A coincide with the vertices which

are the endpoints of the segment. The value hK(f i) gives the distance of 0 ∈ K to its endpoints

(Proposition 1.2.61.2.6) and because the 0-dimensional Hausdorff measure counts the number of points in

a set, H0(Fi) = 1. Thus, 1
1

∑2
i=1H0(Fi)hK(f i) =

∑2
i=1 hK(f i) = ‖k1‖V + ‖k2‖V = ‖k1 − k2‖V =

H1(K) = V (A[0],K). The third equality holds because the segment [k1, k2] contains the origin, so

k1 = −|k1|e1 and k2 = |k2|e1 point in opposite directions.

By Corollary 1.2.111.2.11 the mixed volume in the assertation can be calculated through

V (A[n− 1],K) =
1

n
lim
t→0

Hn (A+ tK)−Hn (A)

t
.

So, a further examination ofHn (A+ tK) is needed. We will show that the set A+tK can be subdivided

into several smaller pieces whose volumes are easier to calculate. According to Proposition 1.2.61.2.6 the

hyperplane Hi := {y ∈ V | f i(y) = hK(f i)} supports K, whereby there is xi ∈ Hi ∩ K for each

i = 1, 2, . . . , N . Define the set Pi := {y + sxi | y ∈ Fi, 0 ≤ s ≤ t} = Fi + [0, txi]. This set describes a

prism with (n− 1)-dimensional base Fi which is translated into direction xi (see Figure 1.21.2 (b)). Its

“thickness” or height is

h := hA+tK(f i)− hA(f i) = hA(f i) + thK(f i)− hA(f i) = thK(f i)

where we used Proposition 1.2.61.2.6 twice to calculate the distances of the origin to the supporting

hyperplanes for A+tK and A defined by the normal f i. The hyperplanes Hs(f
i) = {y ∈ V | f i(y) = s}

are parallel to the facet Fi. Further, the intersection of a prism Pi with these hyperplanes is either
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A

K

Fi

=̂f i
=̂xi

(a) Minkowski sum A+K

R

Pi

⊂ S

⊂ F

(b) Dividing the Minkowski sum into prisms Pi (light gray) and
the remainder S (dark gray)

Figure 1.2: Calculation of the mixed volume V (A[n− 1],K)

empty or a translation of the facet Fi into direction xi. In particular,

Pi ∩Hs(f
i) =

Fi + vs , s ∈ [hA(f i), hA+tK(f i)]

∅ , s /∈ [hA(f i), hA+tK(f i)].

where vs ∈ [0, txi] is a vector in direction xi (of length
s−hA(fi)
hK(fi) ‖xi‖V ). Then by Cavalieri’s principle

([For09For09, §5, Satz 3, p. 49]) we have

Hn (Pi) =

∫
R
Hn−1(Pi ∩Hs(f

i)) ds =

∫ hA+tK(fi)

hA(fi)

Hn−1(Fi + vs) ds

=

∫ hA(fi)+h

hA(fi)

Hn−1(Fi) ds = hHn−1(Fi)

= tHn−1(Fi)hK(f i).

Each of these N prisms Pi is contained in the sum A+ tK (by definition of the Minkowski sum) but

not in A (by construction). Therefore,

A+ tK = A ∪
N⋃
i=1

Pi ∪ S

where S := (A + tK) \
(
A ∪

⋃N
i=1 Pi

)
is the remaining part of the Minkowski sum “close to” the

(n− 2)-dimensional faces of A (dark gray in Figure 1.21.2 (b)). Note that this decomposition of A+ tK
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is not pairwise disjoint but any intersection of the sets A, Pi and S is lower-dimensional and thus a

set of n-dimensional Hausdorff measure zero. Therefore, we conclude

V (A[n− 1],K) =
1

n
lim
t→0

Hn (A+ tK)−Hn (A)

t

=
1

n
lim
t→0

Hn (A) +
∑N
i=1Hn (Pi) +Hn (S)−Hn (A)

t

=
1

n
lim
t→0

∑N
i=1Hn−1(Fi)thK(f i) +Hn (S)

t

=
1

n

N∑
i=1

Hn−1(Fi)hK(f i) +
1

n
lim
t→0

Hn (S)

t
.

We need to further investigate the term limt→0
Hn(S)
t .

The intersection of a facet Fi with another facet Fj is either empty or a face of A of dimension

j ≤ n−2 ([Brø83Brø83, Theorem 5.9, pp. 30+33 and Theorem 10.4, p. 65]). Recall that a face of a polytope

again is a polytope and therefore compact by Lemma 1.2.31.2.3. Then the set

F := Fn−2(A) :=

N⋃
i,j=1
i 6=j

(Fi ∩ Fj)

is the union of all those faces of A which are of dimension j ≤ n− 2. (In the two-dimensional drawing

Figure 1.21.2 the set F is represented by the “vertices” which actually consist of (n − 2)-dimensional

faces of A.) The set F is compact since it is the finite union of compact sets.

Define the radius R := sup‖f‖V ∗=1 hK(f) and recall from Proposition 1.2.61.2.6 that for each unit length

f ∈ V ∗ the hyperplane HhK(f)(f) = {v ∈ V | f(v) = hK(f)} supports K, that is, HhK(f)(f)∩K 6= ∅

and the value hK(f) is the distance of 0 ∈ K to this hyperplane. Geometrically, we may think of

R = sup
‖f‖V ∗=1

hK(f) = sup
{

dist(0, HhK(f)(f))
∣∣∣ f ∈ V ∗, ‖f‖V ∗ = 1

}
as the supremal distance of 0 ∈ K to the boundary of K or, in other words, the radius of the smallest

ball which contains K (Figure 1.21.2). That is,

A ∪
N⋃
i=1

Pi ∪ S = A+ tK ⊂ A+ tBR(0) =

(
int (A) ∪

N⋃
i=1

Fi ∪ F

)
+ tBR(0).
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However, since by definition S 6⊂
(
A ∪

⋃N
i=1 Pi

)
, we know that actually

S ⊂ F + tBR(0) =
⋃
c∈F

BtR(c).

Since the closure S is compact (because its bounded as a subset of the bounded convex body A+ tK)

we may take a subcover of balls of radius tR centered at finitely many, say M = M(K), points ci ∈ F .

Therefore, the volume of S calculates to

Hn (S) = Hn
(
S
)
≤

M∑
i=1

Hn (BtR(ci)) = MHn (B1(0))Rntn = Ctn

where C = C(A,K, n) > 0 is a constant. Since n ≥ 2, we conclude

0 ≤ lim
t→0

Hn (S)

t
≤ C lim

t→0
tn−1 = 0

which finishes the proof. �

Note that if K = A the previous result produces the formula for the volume of a polytope which was

motivated earlier. Thus, a posteriori, we have also given a (rather complicated) proof of the usual

volume formula for polytopes.

For the next chapter we need to prove the following result about polytopes in a two-dimensional

space which intuitively holds true. Indeed, the proof is quite straightforward if one unravels all the

tedious definitions that will be made.

Lemma 1.2.15

Let P = [a1a2 . . . a2N ] be a symmetric polygon in a two-dimensional normed space V with 2N vertices.

Further, let λ1, λ2, . . . , λN be arbitrary positive real numbers. Then there exists a symmetric polygon

Q = [b1b2 . . . b2N ] with 2N vertices such that

bi+1 − bi = λi(ai+1 − ai)

for all i = 1, 2, . . . , N , that is, the ith edge of P is scaled by the factor λi and therefore the ith edges

of P and Q are parallel.

Proof: The polygon Q can be explicitly constructed from P . We will prove this lemma by induction

on N . When N = 1, the statement is trivial because we can simply choose b1 := λ1a1 and b2 := −b1.

Suppose the assertion holds for an N ∈ N and let P = [a1a2 . . . a2(N+1)] be a symmetric polygon with
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a1

a2

aN+1

aN+2

λN+1

λ2

λ1

P a2N+2

aN+3

(a) Initial polygon P

ãN+1

λ̃N = 1
P̃

λ̃1 ã1

ãN

ã2N

(b) Polygon P̃ without removed vertices a1 and aN+2

b̃1

b̃N

b̃N+1

Q̃

b̃2N

(c) Scaled polygon Q̃

b̃1

b̃N

b̃N+1

v′N+1

b̃0

v′1

(d) Extended set
{
b̃0, b̃0, . . . , b̃N+1

}
b̃1

b̃N

b̃N+1

b̃0

(e) Translated set
{
b̃0, b̃0, . . . , b̃N+1

}
Q

b2

bN+1

bN+2

b1

b2N+2

bN+3

(f) Scaled polygon Q

Figure 1.3: Constructing the scaled polygon Q from P for 2(N + 1) vertices
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2(N + 1) vertices. For i = 1, 2, . . . , N + 1 define the vectors vi := ai+1 − ai corresponding to the

edges of P and v′i := λivi which will become the edges of the polygon Q. To be able to apply the

inductive hypothesis we need to construct a symmetric polygon with 2N vertices (Figure 1.31.3 (a)).

We will do this by removing the vertices a1 and aN+2 = −a1, that is, define the symmetric 2N -gon

P̃ = [ã1ã2 . . . ã2N ] where

ãi :=

ai+1 i = 1, 2, . . . , N

ai+2 i = N + 1, N + 2, . . . , 2N

.

Further, define the new scaling coefficients

λ̃i :=

λi+1 i = 1, 2, . . . , N − 1

1 i = N

,

that is, the edge ṽN := ãN+1 − ãN will not be scaled (Figure 1.31.3 (b)). By the inductive hypothesis

there exists a symmetric 2N -gon Q̃ = [̃b1b̃2 . . . b̃2N ] such that

b̃i+1 − b̃i = λ̃i(ãi+1 − ãi)

for all i = 1, 2, . . . , N (Figure 1.31.3 (c)). Consider only the set
{
b̃1, b̃2, . . . , b̃N

}
of the first N vertices.

For notational convenience let us forget about the remaining vertices and (re-)define two new vertices

by going along the initial scaled edges, namely, b̃0 := b̃1 − v′1 and b̃N+1 := b̃N + v′N+1 (Figure 1.31.3 (d)).

Translate the extended vertex set
{
b̃0, b̃0, . . . , b̃N+1

}
affinely such that b̃N+1 = −b̃0 and denote the

points by the same name (Figure 1.31.3 (e)). In fact, the map T : V → V, v 7→ v− 1
2

(
b̃N+1 + b̃0

)
is such

an affine translation. Finally, we define the vertices

bi :=

b̃i−1 i = 1, 2, . . . , N + 1

−b̃i−1−(N+1) i = N + 2, N + 3, . . . , 2N + 2

.

The 2(N + 1)-gon Q = [b1b2 . . . b2N+2] is symmetric by construction (Figure 1.31.3 (f)). Unwinding the

definitions, we compute

bi+1 − bi = b̃i − b̃i−1 = λ̃i−1(ãi − ãi−1) = λi(ai+1 − ai)
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for i = 2, 3, . . . , N + 1. Moreover, for i = 1

b2 − b1 = b̃1 − b̃0 = v′1 = λ1v1 = λ1(a2 − a1). �

1.2.6 Convex and linear functions on convex sets

This section ends with some results on the action of linear and convex functions on convex sets.

Lemma 1.2.16

Let V1 and V2 be two finite-dimensional normed spaces and L : V1 → V2 a linear map.

(i) If K1 ⊂ V1 is a convex body then L(K1) ⊂ V2 is a convex body.

(ii) If K2 ⊂ im (L) ⊂ V2 is a convex body then the preimage L−1(K2) ⊂ V1 is a convex set. If

further L is injective then L−1(K2) is a convex body.

(iii) Suppose P2 ⊂ im (L) ⊂ V2 is a polytope containing the origin given by its half-space representation

(Theorem 1.2.71.2.7)

P2 =

M⋂
i=1

{
y ∈ V2 | F i(y) ≤ 1

}
for F i ∈ V ∗2 . Then the preimage P1 := L−1(P2) ⊂ V1 is a polytope and its half-space representa-

tion is given by

P1 =

M⋂
i=1

{
x ∈ V1 | f i(x) ≤ 1

}
where f i := F i ◦ L ∈ V ∗1 .

(iv) If K2 ⊂ V2 is symmetric then the preimage L−1(K2) ⊂ V1 is a symmetric set.

Proof: For i = 1, 2 let xi ∈ K1 and yi ∈ K2 such that yi = Lxi and let t ∈ [0, 1]. Then by the

linearity of L

ty1 + (1− t)y2 = tLx1 + (1− t)Lx2 = L(tx1 + (1− t)x2).

If K1 is convex this equality implies the convexity of L(K1) if read from right to left and conversely, if

read from left to right it implies the convexity of L−1(K2) if K2 is convex. If x0 is an interior point of

K1 there is ε > 0 such that B1 := Bε‖L‖−1
L(V1,V2)

(x0) ⊂ K1. Let x be an arbitrary point in B1. Then
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Lx ∈ L(K1) but also ‖Lx− Lx0‖V2
≤ ‖L‖L(V1,V2)‖x− x0‖V2

< ‖L‖L(V1,V2)ε‖L‖
−1
L(V1,V2) = ε, that is,

Bε(Lx0) ⊂ L(K1). In other words, L(K1) has non-empty interior. Since a linear map is continuous,

the image of a compact set is compact. Therefore, L(K1) is a convex body if K1 is.

For part (ii) note that L̃ : V1 → im (L), v 7→ Lv is bijective and L−1(K2) = L̃−1(K2 ∩ im (L)).

Thus, we just interchange the roles of K1, V1 and K2, V2, respectively, and apply (i) to the linear map

L̃−1 : V2 → V1.

For part (iii) denote Q :=
⋂M
i=1{x ∈ V1 | f i(x) ≤ 1} and let v ∈ P1. Then Lv ∈ P2, that is,

1 ≥ F i(Lv) = f i(v) for i = 1, 2, . . . ,M . Thus, v ∈ Q. Conversely, if v ∈ Q then f i(v) = F i(Lv) ≤ 1

for i = 1, 2, . . . ,M , that is, Lv ∈ P2. Hence, v ∈ P1.

For part (iv) suppose K2 is symmetric and let x ∈ L−1(K2), that is, Lx ∈ K2. Since K2 is

symmetric, we know that L(−x) = −(Lx) ∈ K2 or −x ∈ L−1(K2). So, L−1(K2) is symmetric. �

Let us conclude this section with a result on the maxima of convex functions on polytopes. Suppose

A ⊂ V is a convex set. A map F : A→ R ∪ {−∞,+∞} is called a convex function if

F (λv + (1− λ)w) ≤ λF (v) + (1− λ)F (w)

whenever λ ∈ [0, 1] and v, w ∈ A. We call a convex function F proper if it nowhere takes the value

−∞ and is not identically +∞.

An easy induction proves that the inequality above holds for arbitrary finite convex combinations.

Lemma 1.2.17

Let A ∈ V be a convex set, v1, v2, . . . , vN ∈ A, λ1, λ2, . . . , λN ∈ [0, 1] with
∑N
i=1 λi = 1 and F : A→ R

a convex function. Then

F

(
N∑
i=1

λivi

)
≤

N∑
i=1

λiF (vi).

Proof: For N = 1 the claim is trivial and for N = 2 it follows from the definition of a convex

function. Assume the assertion holds for N − 1. Note that
∑N−1
i=1 λi = 1− λN or

∑N−1
i=1

λi
1−λN = 1.

Define w :=
∑N−1
i=1

λi
1−λN vi ∈ V . Then

F

(
N∑
i=1

λivi

)
= F

(
N−1∑
i=1

λivi + λN

)
= F ((1− λN )w + λvNvN )

≤ (1− λN )F (w) + λF (vN )

= (1− λN )F

(
N−1∑
i=1

λi
1− λN

vi

)
+ λF (vN )
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≤ (1− λN )

N−1∑
i=1

λi
1− λN

F (vi) + λF (vN )

=

N∑
i=1

λiF (vi)

where we used the definition of a convex function for the first inequality and the inductive hypothesis

for the second. �

The following important maximum principle for convex functions holds.

Proposition 1.2.18

Let P = [a1a2 . . . aN ] be a polytope in V and F : V → R a convex function which is bounded above on

P . Then the supremum of F on P is attained at one of its vertices, that is,

sup
x∈P

F (x) = sup
i=1,2,...,N

F (ai) = max
i=1,2,...,N

F (ai).

Proof: The second identity follows from the fact that {a1, a2, . . . , aN} is a finite set. It is im-

mediate that supi=1,2,...,N F (ai) ≤ supx∈P F (x) since {a1, a2, . . . , aN} ⊂ conv (a1, a2, . . . , aN ) = P .

Conversely, let v =
∑N
i=1 λiai ∈ P where

∑N
i=1 λi = 1. Then the convexity of F yields

F (v) = F

(
N∑
i=1

λiai

)
≤

N∑
i=1

λiF (ai) ≤
N∑
i=1

λi max
k=1,2,...,N

F (ak) = max
k=1,2,...,N

F (ak)

since v was arbitrary we get supx∈P F (x) ≤ maxk=1,2,...,N F (ak). �

In fact, this result holds true if P is merely convex and not necessarily a polytope but then the

supremum is attained on the set of extreme points (the extreme subsets that consist only of one

point), see [Roc70Roc70, Corollary 32.3.1, p. 344]. For the application in the next chapter only the special

case above is needed.
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1.3 Differential geometry

1.3 Differential geometry

In this section we introduce basic concepts from differential geometry, such as the notion of a smooth

manifold and its tangent space and tangent bundle. We describe the differential of a smooth map and

examine smooth immersions and images of such maps. Finally, we consider Finsler metrics. In this

section and for the rest of this thesis we will use the Einstein summation convention, which means

that – if not explicitly stated otherwise – we sum over repeated upper and lower indices. We use the

convention that Latin indices run from 1 to n and Greek indices run from 1 to m. The presentation

given here is borrowed from [Ove13Ove13, Chapters 1.3 - 1.4, pp. 28 - 41, Chapter 2] which in turn is based

on the book of Lee [Lee13Lee13]. The source for the concepts of Finsler geometry is the textbook [BCS00BCS00]

by Bao et al.

1.3.1 Smooth manifolds

Suppose M is a topological space. We call M a topological manifold of dimension m or a

topological m-manifold if it fulfils the following three properties:

• M is a Hausdorff space: for every pair of distinct points p, q ∈ M, there are disjoint open

subsets U, V ⊂M such that p ∈ U and q ∈ V .

• M is second-countable : there exists a countable basis for the topology ofM.

• M is locally Euclidean of dimension m: for each point p ∈ M there is an open subset

U ⊂M containing p, an open subset Û ⊂ Rm and a homeomorphism ϕ : U → Û .

A (local) coordinate chart is a pair (U,ϕ) where U is an open subset ofM and ϕ : U → Û is a

homeomorphism onto an open subset Û = ϕ(U) ⊂ Rm. The set U is called a coordinate neigh-

bourhood and the map ϕ a (local) coordinate map. The component functions (u1, u2, . . . , um)

of ϕ, defined by ϕ(p) = (u1(p), u2(p), . . . , um(p))), are called (local) coordinates. Sometimes we

write p̂ = (u1(p), u2(p), . . . , um(p)) for the local coordinates of a point p ∈ M and we use any of

the notations (U,ϕ) = (U, (u1, u2, . . . , um)) = (U, (uα)) for a coordinate chart (see [Lee13Lee13, pp. 2–4]).

Another way to emphasise the dimension dim (M) of a manifold is to write it as an upper index, e.g.

Mm.

To make sense of derivatives of functions on a manifold or maps between manifolds we need to

introduce an additional structure which turns a topological into a smooth manifold. Consider two

coordinate charts (U,ϕ) and (V, ψ) of a topological manifoldM where U ∩ V 6= ∅. The transition
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Chapter 1 Preliminaries of multilinear algebra, convex geometry and differential geometry

map between ϕ and ψ is the mapping

ψ ◦ ϕ−1 : ϕ(U ∩ V ) ⊂ Rm → ψ(U ∩ V ) ⊂ Rm.

A smooth atlas A is the union of all those coordinate charts of M such that the union of the

coordinate neighbourhoods coverM and each transition map is a smooth map from Rm to Rm, that

is, A fulfils the following two properties:

• M =
⋃

(U,ϕ)∈A U ,

• ψ◦ϕ−1 : ϕ(U∩V )→ ψ(U∩V ) is of class C∞(Rm,Rm) for all coordinate charts (U,ϕ), (V, ψ) ∈ A

with U ∩ V 6= ∅.

Every smooth atlas A ofM is contained in a unique maximal smooth atlas ([Lee13Lee13, Proposition 1.17,

p. 13]) – an atlas containing A which is not properly contained in any larger smooth atlas itself. A

smooth structure on a topological manifoldM is a maximal smooth atlas. A smooth manifold

is a topological manifold endowed with a smooth structure. A coordinate chart of a smooth manifold

is called a smooth coordinate chart .

LetMm and Nn be smooth manifolds. A map F : M→N is called a smooth map if for every

p ∈M there are smooth coordinate charts (U,ϕ) containing p and (V, ψ) containing F (p) such that

F (U) ⊂ V and

F̂ := ψ ◦ F ◦ ϕ−1 ∈ C∞(ϕ(U), ψ(V ))

where ϕ(U) is an open subset of Rm and ψ(V ) is an open subset of Rn. The function F̂ is called

a coordinate representation of F . Note that this definition does not depend on the choice of

coordinate charts because the transition maps are smooth. The set of smooth maps between manifolds

will be denoted by C∞(M,N ). In the special case when N = R we set

C∞(M) := C∞(M,R).

A homeomorphism from M to N is a continuous bijective map F : M→N that has a continuous

inverse. A smooth bijective map F : M→N that has a smooth inverse is a diffeomorphism from

M to N .

Now we will introduce a “local linear approximation” of a given smooth m-dimensional manifoldM.

Let p be a point ofM. A linear map v : C∞(M)→ R is called a derivation at p if it satisfies the
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following product rule

v(fg) = f(p)v(g) + g(p)v(f) (1.3.22)

for all f, g ∈ C∞(M). The set of all derivations at p is called the tangent space at p and is denoted

by TpM. An element of TpM is called a tangent vector at p. It can be shown that TpM is an

m-dimensional real vector space. A basis of TpM can be given through a smooth coordinate chart

(U,ϕ) = (U, (uα)) containing p by defining the derivations ∂
∂uα

∣∣
p
as

∂

∂uα

∣∣∣∣
p

(f) :=
∂

∂uα

∣∣∣∣
ϕ(p)

(f ◦ ϕ−1)

for f ∈ C∞(U) and α = 1, 2, . . . ,m (see [Lee13Lee13, Proposition 3.15, p. 61]). Note that on the right-hand

side the symbol ∂
∂uα means the partial derivative with respect to the coordinate uα of a real-valued

function, whereas on the left-hand side it denotes a derivation. These basis tangent vectors are called

coordinate vectors and form the coordinate basis for TpM. Thus, any tangent vector v ∈ TpM

can be written uniquely as

v = vα
∂

∂uα

∣∣∣∣
p

where vα ∈ R and the summation convention is used if an upper index “in the denominator” is

understood as a lower index. That is, the right-hand side is understood to be summed over α =

1, 2, . . . ,m.

The tangent bundle of M is the disjoint union of all tangent spaces TpM toM, that is,

TM :=
⊔
p∈M

TpM.

Here the disjoint union
⊔
p∈M TpM is the set

⋃
p∈M{p} × TpM. Thus, an element of TM is of

the form (p, v) where v ∈ TpM. The tangent bundle of a smooth m-dimensional manifold is itself a

smooth manifold of dimension 2m. A local smooth coordinate chart (U,ϕ) = (U, (uα)) ofM extends

to a smooth coordinate chart of TM in the following way. Let π : TM→M be the natural projection

map defined by π(p, v) := p. The set π−1(U) ⊂ TM is the set of all tangent vectors ofM at points

of U . Define ϕ̃ : π−1(U)→ R2m by

ϕ̃

(
p, vα

∂

∂uα

∣∣∣∣
p

)
:=
(
u1(p), u2(p), . . . , um(p), v1, v2, . . . , vm

)
. (1.3.23)

59



Chapter 1 Preliminaries of multilinear algebra, convex geometry and differential geometry

Its image set is ϕ(Up)×Rm. It can be shown that this map is a smooth coordinate chart and all such

maps form a smooth atlas for TM, turning it into a smooth manifold (see [Lee13Lee13, Proposition 3.18,

p. 66]). The local coordinates given by (1.3.231.3.23) are called natural coordinates on TM.

A smooth map F : M→N between two smooth manifolds gives rise to a linear map between their

respective tangent spaces. The differential of F at p is the linear map

dFp : TpM→ TF (p)N

which for a fixed v ∈ TpM is given by its action on f ∈ C∞(M) by

dFp(v)(f) := v(f ◦ F ).

If one considers the differential at each point ofM this map extends to a map between the tangent

bundles, called the global differential of F

dF : TM→ TN , (p, v) 7→ (F (p), dFp(v)).

If (U,ϕ) = (U, (uα)) is a smooth coordinate chart ofM and (V, ψ) = (V, (xi)) a smooth coordinate

chart of N then the differential of F at p can be locally expressed by

dFp

(
vα

∂

∂uα

∣∣∣∣
p

)
= vα

∂F̂ i

∂uα
(p̂)

∂

∂xi

∣∣∣∣
F (p)

(1.3.24)

where F̂ := ψ ◦ F ◦ ϕ−1 and p̂ = ϕ(p) are the coordinate representations of F and p (see [Lee13Lee13,

Equation (3.10), p. 63]). Here latin indices are summed over i = 1, 2, . . . , n and greek indices are

summed over α = 1, 2, . . . ,m.

A smooth immersion is a smooth map X : M→N whose differential dXp : TpM→ TX(p)N is

injective at each point p inM. Equivalently, a smooth map X : M→N is a smooth immersion if

and only if dim (im (dXp)) = m for all p ∈M. A smooth embedding of M into N is a smooth

immersion X : M→N which also is a homeomorphism onto its image X(M).

Suppose X : Mm → Nn is a smooth immersion. One can show that locally X is an embedding,

that is, for each point p ∈ M there is a neighbourhood U of p in M such that X
∣∣
U

is a smooth

embedding (see [Lee13Lee13, Theorem 4.25, p. 87]). As an open subset ofM it is easy to show that U is a

smooth m-dimensional manifold (by restricting the coordinate charts to U , see [Lee13Lee13, Example 1.26,

p. 19]). Then the map X
∣∣
U

: U → N is a smooth embedding of a smooth m-dimensional manifold

into a smooth n-dimensional manifold. Another result ([Lee13Lee13, Proposition 5.2, p. 99]) shows that the
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image of a smooth embedding is again a smooth manifold of the same dimension as the manifold in

the domain of the embedding. Thus, the image S := X
∣∣
U

(U) ⊂ N is a smooth m-manifold in the

ambient smooth n-manifold N wherefore it makes sense to consider the tangent space TX(p)S to S at

a point X(p) ∈ N .

Lemma 1.3.1

Let X : Mm → Nn be a smooth immersion, p a point inM and U ⊂M an open neighbourhood of p.

Then the tangent space to S := X(U) at X(p) is given by

TX(p)S = d
(
X
∣∣
U

)
p

(TpU) .

Proof: By assumption d
(
X
∣∣
U

)
p

: TpU → TX(p)N is an injective linear map and therefore biject-

ive onto its image d
(
X
∣∣
U

)
p

(TpU). Hence, both vector spaces TX(p)S and d
(
X
∣∣
U

)
p

(TpU) are

m-dimensional. For dimensional reasons we need only show that d
(
X
∣∣
U

)
p

(TpU) ⊂ TX(p)S to finish

the proof. Thus, suppose w ∈ d
(
X
∣∣
U

)
p

(TpU). Then there is v ∈ TpU such that w = d
(
X
∣∣
U

)
p

(v).

As a composition of linear maps, w is a linear map from C∞(S) to R. We need to show the product

rule (1.3.221.3.22). Let f, g ∈ C∞(S). Then f ◦X
∣∣
U
, g ◦X

∣∣
U
∈ C∞(U). Unraveling the definitions and

using (1.3.221.3.22) for v ∈ TpU we get

w(fg) = d
(
X
∣∣
U

)
p

(v)(fg)

= v((fg) ◦X
∣∣
U

)

= v((f ◦X
∣∣
U

)(g ◦X
∣∣
U

))

= (f ◦X
∣∣
U

)(p)v(g ◦X
∣∣
U

) + (g ◦X
∣∣
U

)(p)v(f ◦X
∣∣
U

)

= f(X(p))d
(
X
∣∣
U

)
p

(v)(g) + g(X(p))d
(
X
∣∣
U

)
p

(v)(f)

= f(X(p))w(g) + g(X(p))w(f).

Therefore, w is a derivation at X(p) and so w ∈ TX(p)S. �

Furthermore, the injectivity of the differential of a smooth immersion immediately yields the next

result.

Corollary 1.3.2

Let X : Mm → Nn be a smooth immersion and (U, (uα)) a smooth coordinate chart of M at some
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point p. Then (
dXp

(
∂

∂u1

∣∣∣∣
p

)
, dXp

(
∂

∂u2

∣∣∣∣
p

)
, . . . , dXp

(
∂

∂um

∣∣∣∣
p

))

is an ordered basis for the m-dimensional subspace TX(p)X(U) of the n-dimensional tangent space

TX(p)N to the ambient manifold N at X(p).

1.3.2 Finsler manifolds

Let N be a smooth n-dimensional manifold and TN =
⊔
p∈N TpN be its tangent bundle. The subset

o := {(p, 0) ∈ TN} of TN is called the zero section of TN .

A non-negative function F : TN → [0,∞) is called a Finsler metric if the following three

conditions are satisfied:

• Regularity : F ∈ C∞(TN \ o) ∩ C0(TN ).

• Positive homogeneity : F (p, tv) = tF (p, v) for all t > 0 and (p, v) ∈ TN .

• Ellipticity : The coefficients gFij(p, v) :=
(

1
2F

2
)
yiyj

(p, v) form a positive definite matrix for any

(p, v) ∈ TN \ o.

The third condition is to be understood in the following way. Recall that a smooth coordinate chart

(U, (x1, x2, . . . , xn)) containing p ∈ N induces natural coordinates ϕ̃ = (xi, yi) on the tangent bundle

by v = yi ∂
∂xi

∣∣
p
∈ TpN (see (1.3.231.3.23)). Then in local coordinate representation F is given by

F (p, v) = F̂ (x1, x2, . . . , xn, y1, y2, . . . , yn).

It is with respect to the local expression F̂ = F ◦ ϕ̃−1 that we take the derivatives with respect to yi

and yj . The collection of coefficients
(
gFij(p, v)

)
ij

are called the fundamental tensor and locally

define the fundamental form by

gF
∣∣
(p,v)

(u,w) :=
1

2

∂2

∂s∂t

∣∣∣∣
s=t=0

F 2(p, v + su+ tw) = gFij(p, v)uiwj

where u = ui ∂
∂xi

∣∣
p
, w = wi ∂

∂xi

∣∣
p
∈ TpN . A Finsler metric is called reversible if F (p, v) = F (p,−v)

for all (p, v) ∈ TN .

A smooth n-manifold N together with a Finsler metric F is called a Finsler manifold and will

be denoted by (N , F ) or (Nn, F ).
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Let p ∈ N be fixed. One can show that the three conditions for a Finsler metric imply that F (p, ·)

is an asymmetric (only positive homogeneous) norm on the tangent space TpN , that is, the following

additional two conditions hold (see [BCS00BCS00, Theorem 1.2.2, pp. 7–9]).

• Positivity : F (p, v) > 0 whenever v 6= 0 ∈ TpN .

• Triangle inequality : F (p, v1 + v2) ≤ F (p, v1) + F (p, v2) for all v1, v2 ∈ TpN where equality

holds if and only if v2 = αv1 for some α ≥ 0.

If, in addition, the Finsler metric is reversible then one has absolute homogeneity and the tangent

space TpN becomes a normed space with norm F (p, ·) in the usual sense of functional analysis. The

positive homogeneity and the triangle inequality imply that F (·, ·) is a convex function in its second

component.

A Finsler metric F is called a local Minkowski metric if for each p ∈ N there are smooth

coordinate charts (Up, (x
1, x2, . . . , xn)) such that the coordinate representation of F at p is independent

of xi, that is,

F (p, v) = F̂ (x1, x2, . . . , xn, y1, y2, . . . , yn) = F̂ (y1, y2, . . . , yn)

where v = yi ∂
∂xi

∣∣
p
∈ TpN . A Finsler manifold (N , F ) where F is a local Minkowski metric is called

locally Minkowskian .
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Chapter 2

The Busemann–Hausdorff definition of area in

Finsler geometry

In the first section of this chapter, we formalise the notion of Finsler volume introduced by Busemann

in [Bus47Bus47]. Subsequently, the Finsler area of an immersion arises. Similarly to Overath [Ove13Ove13]

we introduce the m-dimensional Busemann–Hausdorff area integrand which in turn leads to the

m-dimensional Busemann–Hausdorff area density.

The second section mainly contains an analysis of Burago and Ivanov’s paper ’Minimality of

planes in normed spaces’ [BI12BI12]. In their work they proved the convexity of the two-dimensional

Busemann–Hausdorff area density. Using multilinear algebra we introduce the concept of a calibrator

for an area density. We show that the convexity of a density is equivalent to the existence of such

calibrators. Subsequently, the defining inequality for a calibrator will be reformulated into the language

of convex geometry and an explicit construction for calibrators will be given. This finally results in an

inequality for polytopes on the two-dimensional plane.

Note that in contrast to Euclidean space or more generally Riemannian manifolds, there is no unique

notion of volume when dealing merely with a normed space or more generally a Finsler manifold. The

Busemann–Hausdorff definition is only one of many possible choices of volume in the setting of a

Finsler manifold. An alternative is the Holmes–Thompson volume ([Tho96Tho96, Chapter 6]) which we do

not address here.

2.1 The m-dimensional Busemann–Hausdorff area density

Suppose (Mm, F ) is a Finsler manifold of dimension m. Let p ∈M be an arbitrary but fixed point

and (Up, ϕ) be a smooth coordinate chart containing p where we denote the coordinate functions of ϕ
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as (u1, u2, . . . , um). Then we define the (closed) Finslerian unit ball at p as

BFp := {v ∈ TpM | F (p, v) ≤ 1} ⊂ TpM.

The Busemann–Hausdorff volume form is given by the volume ratio of the Euclidean and the Finslerian

unit ball. To make sense of the latter notion we need to use the local coordinate chart (Up, ϕ) and

the Hausdorff measure in Rm. Let π : TM →M, (q, v) → q be the natural projection map of the

tangent bundle and recall that ϕ induces natural coordinates (π−1(Up), ϕ̃) on the tangent bundle

TM by (1.3.231.3.23), that is,

ϕ̃ : π−1(Up)→ ϕ(Up)× Rm,

(
q, vα

∂

∂uα

∣∣∣∣
q

)
7→
(
u1(q), u2(q), . . . , um(q), v1, v2, . . . , vm

)
.

The Finslerian unit ball at p in the tangent bundle – the set {(p, v) | v ∈ BFp } ⊂ TM – is contained

in π−1(Up). Let π2 : Rm × Rm → Rm, (x, y) 7→ y be the projection map onto the second component.

Then the Finslerian unit ball at p corresponds to the set

B̃Fp := π2 ◦ ϕ̃
(
{(p, v) | v ∈ BFp }

)
⊂ Rm.

Note that by using the natural coordinates one can rewrite this set as

B̃Fp =

{
v = (v1, v2, . . . , vm) ∈ Rm

∣∣∣∣∣ F
(
p, vα

∂

∂uα

∣∣∣∣
p

)
≤ 1

}

The m-dimensional Busemann–Hausdorff volume form is given by

dVF (p) := σF (p)du1 ∧ du2 ∧ · · · ∧ dum (2.1.1)

where

σF (p) :=
εm

Hm
(
B̃Fp

) . (2.1.2)

Here εm := Hm(Bm1 (0)) denotes the volume of the m-dimensional Euclidean unit ball in Rm and Hm

is the m-dimensional Hausdorff measure on Rm.

The Busemann–Hausdorff volume of a subset Ω ⊂M is defined as

volF (Ω) :=

∫
p∈Ω

dVF (p). (2.1.3)
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If F is a local Minkowski metric, that is, independent of the point p and M = Rm then the

Busemann–Hausdorff volume of the Finslerian unit ball BF = {v ∈ Rm | F (v) ≤ 1} equals the volume

of the Euclidean unit ball

volF (BF ) =

∫
p∈Ω

dVF (p)

=

∫
p∈BF

εm

Hm(B̃Fp )
du1 ∧ du2 ∧ · · · ∧ dum

=

∫
p∈BF

εm

Hm(B̃F )
du1 ∧ du2 ∧ · · · ∧ dum

=
εm

Hm(BF )

∫
p∈BF

du1du2 · · · dum

=
εm

Hm(BF )
Hm(BF )

= εm.

It is possible to show that for absolutely homogeneous Finsler metrics F , the Finsler manifold (M, F )

inherits a metric space structure ([BCS00BCS00, §6.2, p. 145]). Busemann showed in [Bus47Bus47] that the Finsler

volume volF of a set Ω ⊂ M coincides with the Hausdorff measure induced by this metric space

structure. Using the Busemann–Hausdorff definition of volume we can introduce a way of measuring

surface area of a submanifold immersed into an ambient manifold.

Let m ≤ n and X : Mm → Nn be a smooth immersion of a smooth m-manifoldM into a Finsler

n-manifold (N , F ). ThenM inherits a pull-back Finsler metric through

X∗F (p, v) := F (X(p), dXp(v)) (2.1.4)

for (p, v) ∈ TpM. The map X∗F : TM→ [0,∞) is indeed a Finsler metric, because X is smooth and

its differential at each p ∈M injective. The Busemann–Hausdorff area of the immersion X

for a measurable subset Ω ⊂M is given by

areaFΩ(X) :=

∫
p∈Ω

dVX∗F (p). (2.1.5)

Therein, dVX∗F (p) is given by the formula (2.1.12.1.1).

Let p ∈M be an arbitrary but fixed point and (Up, (u
1, u2, . . . , um)) be a smooth coordinate chart

containing p. The local Busemann–Hausdorff integrand σX∗F (p) can be rewritten as

σX∗F (p) =
εm

Hm
({
v = (v1, v2, . . . , vm) ∈ Rm

∣∣∣ X∗F (p, vα ∂
∂uα

∣∣
p

)
≤ 1
})
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=
εm

Hm
({
v ∈ Rm

∣∣∣ F (X(p), vαdXp

(
∂
∂uα

∣∣
p

))
≤ 1
})

Therefore, we define the map

aFm :
⊔
q∈N

GCm(TqN )→ R+,

(q, w1 ∧ w2 ∧ · · · ∧ wm) 7→ εm
Hm ({v = (v1, v2, . . . , vm) ∈ Rm | F (q, vαwα) ≤ 1})

(2.1.6)

Recall that GCm(TqN ) ⊂
∧m

(TqN ) denotes the set of simple m-vectors on TqN . Note that this map

is well-defined; for if w̃1 ∧ w̃2 ∧ · · · ∧ w̃m is another representation of w1 ∧ w2 ∧ · · · ∧ wm then the

injectivity of the Plücker embedding (Proposition 1.1.91.1.9) implies that the vectors {w̃i}mi=1 and {wi}mi=1

span the same m-dimensional subspace. Therefore the denominator in (2.1.62.1.6) does not change value.

We call aFm the m-dimensional Busemann–Hausdorff area integrand or m-dimensional

Finsler area integrand . Notice the similarity to the Finsler area integrand defined by Overath in

[Ove13Ove13, Equation (2.1.5), p. 68]. Therein, Overath uses the representation of the differential in local

coordinates through its Jacobian matrix (see (1.3.241.3.24)) and defines the Finsler area integrand locally

over N ×Rn×m. In the present work we use the above definition to apply Burago and Ivanov’s result.

Note that our definition is not a local one – which contrasts [Ove13Ove13].

In local coordinates about p inM we thereby get

σX∗F (p) = aFm

(
X(p), dXp

(
∂

∂u1

∣∣∣∣
p

)
∧ dXp

(
∂

∂u2

∣∣∣∣
p

)
∧ · · · ∧ dXp

(
∂

∂um

∣∣∣∣
p

))
.

Recall from the previous chapter that locally the image of the immersion X is a submanifold of

dimension m in the ambient n-manifold N . By Corollary 1.3.21.3.2 we know that dXp

(
∂
∂u1

∣∣
p

)
∧

dXp

(
∂
∂u2

∣∣
p

)
∧ · · · ∧ dXp

(
∂

∂um

∣∣
p

)
corresponds to the tangent space TX(p)X(Up) through the Plücker

embedding (Proposition 1.1.91.1.9). Thus, we may rewrite the expression (2.1.52.1.5) for the Busemann–

Hausdorff area of an immersion X as

areaFΩ(X) =

∫
p∈Ω

aFm

(
X(p), dXp

(
∂

∂u1

∣∣∣∣
p

)
∧ · · · ∧ dXp

(
∂

∂um

∣∣∣∣
p

))
du1 ∧ · · · ∧ dum. (2.1.7)

Suppose now that N = Rn and F is a reversible Finsler metric. Fix q ∈ Rn. Then the tangent

space TqN = TqRn is canonically isomorphic to Rn itself ([Lee13Lee13, Proposition 3.13, p. 59]). Since

F is a reversible Finsler metric, the function ‖·‖V := F (q, ·) defines a norm on the vector space

V := Rn ∼= TqRn. Denote the closed unit ball by B := BFq = {v ∈ V | F (q, v) ≤ 1}. Then (V, ‖·‖V ) is
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2.1 The m-dimensional Busemann–Hausdorff area density

an n-dimensional normed space. More generally, we can make the following definition.

Definition 2.1.1

An m-dimensional density on an n-dimensional normed space (V, ‖·‖V ) is a continuous function

A : GCm(V ) → R+ which is absolutely homogeneous, that is A(λσ) = |λ|A(σ) for all λ ∈ R and

σ ∈ GCm(V ).

Definition 2.1.2

The m-dimensional Busemann–Hausdorff area density Abh = AbhV,m : GCm(V ) → R+ in a

normed space (V, ‖·‖) is defined by

Abh(σ) :=
εm

Hm(L−1
σ (B))

(2.1.8)

wherein σ = v1 ∧ v2 ∧ . . . ∧ vm and Lσ : Rm → V is the linear map that takes the standard basis

(e1, e2, . . . , em) of Rm to (v1, v2, . . . , vm), that is, Lσeα = vα for α = 1, 2, . . . ,m.

Notice that v1, v2, . . . , vm ∈ V are linearly independent (because σ ∈ GCm(V )) and the map Lσ is

always injective (and thus, bijective onto its image). Notice further that the map Lσ is not well-defined

as a function of σ. However, the map Abh is well-defined as we will see in Theorem 2.1.32.1.3.

The reason for the introduction of the function Abh becomes clear if we restrict our point of view

again to the specific normed space (Rn, F (q, ·)) with unit ball B = BFq . Then for fixed q ∈ Rn = N

we calculate the value of Abhq,m = Abh to

Abhq,m(v1 ∧ v2 ∧ . . . ∧ vm) =
εm

Hm ({w ∈ Rm | Lw ∈ B})

=
εm

Hm
(
{w = wαeα ∈ Rm | wαvα ∈ BFq }

)
=

εm
Hm ({w = wαeα ∈ Rm | F (q, wαvα) ≤ 1})

.

So, the m-dimensional Finsler area integrand given by (2.1.62.1.6) corresponds to the Busemann–

Hausdorff area density through

aFm(q, v1 ∧ v2 ∧ · · · ∧ vm) = Abhq,m(v1 ∧ v2 ∧ · · · ∧ vm). (2.1.9)

Theorem 2.1.3

The Busemann–Hausdorff area density Abh is an m-dimensional density as defined in Definition 2.1.12.1.1.

Proof: First, we show that the map Abh is both well-defined and absolutely homogeneous. Let
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σ = v1 ∧ v2 ∧ · · · ∧ vm and τ = w1 ∧w2 ∧ · · · ∧wm be two simple m-vectors and let there be a non-zero

scalar λ such that σ = λτ . This means σ and τ span the same one-dimensional subspace of the mth

exterior power. We recall that the Plücker embedding maps an m-dimensional subspace of V to the

one-dimensional line spanned by the m-wedge of a basis of this subspace. In fact, because the Plücker

embedding is injective (Proposition 1.1.91.1.9) we know that

span {v1, v2, . . . , vm} = P = span {w1, w2, . . . , wm}.

Then there is a bijective, linear map T : P → P which sends wα to vα. By virtue of Lemma 1.1.71.1.7 (v)(v)

we know, that σ = detTτ and thus detT = λ. Consider the two linear maps from the definition of

the Busemann–Hausdorff density

Lσ : Rm → P, eα 7→ vα,

Lτ : Rm → P, eα 7→ wα.

Each map is bijective onto its image, so we can define ṽα := L−1
τ (vα) ∈ Rm. Then {ṽ1, ṽ2, . . . , ṽm} is

a basis of Rm. Now consider the linear map T̃ : Rm → Rm sending the standard basis vector eα to ṽα.

We can calculate

T̃ eα = ṽα = L−1
τ (vα) = L−1

τ ◦ Lσeα

and Lσeα = vα = Twα = T ◦ Lτeα.

Since this holds for α = 1, 2, . . . ,m, we get

Lσ = Lτ ◦ T̃ = T ◦ Lτ . (2.1.10)

From (2.1.102.1.10) we conclude that detLτ det T̃ = det(Lτ ◦ T̃ ) = det(T ◦ Lτ ) = detT detLτ and thus

because Lτ is bijective we know

det T̃ = detT = λ.

Therefore, it holds that

Hm
(
L−1
σ (B)

)
= Hm

((
Lτ ◦ T̃

)−1

(B)

)
= Hm

(
T̃−1 ◦ L−1

τ (B)
)

=
∣∣∣det T̃−1

∣∣∣Hm (L−1
τ (B)

)
=
∣∣λ−1

∣∣Hm (L−1
τ (B)

) (2.1.11)
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where we used the fact that linear transformations change the m-dimensional Lebesgue measure of

m-dimensional sets by a constant factor – the absolute value of the determinant of the transformation

(see e.g. [For09For09, §5, Satz 2, p. 48]). By definition of the Busemann–Hausdorff area density we finally

conclude with (2.1.112.1.11) that

Abh(λτ) = Abh(σ) =
εm

Hm(L−1
σ (B))

= |λ| εm

Hm(L−1
τ (B))

= |λ|Abh(τ) (2.1.12)

Thus, we have both shown absolute homogeneity and well-definedness. For if λ = 1, that is, if

v1 ∧ v2 ∧ · · · ∧ vm = w1 ∧ w2 ∧ · · · ∧ wm are two representations of the same simple m-vector σ, then

Abh(v1 ∧ v2 ∧ · · · ∧ vm) = Abh(w1 ∧ w2 ∧ · · · ∧ wm) by (2.1.122.1.12).

For the continuity of the Busemann–Hausdorff area density we sketch a proof here and refer to

[BI12BI12] or [ÁPT04ÁPT04, Exercise 3.5, p. 11 and pp. 18-19]. We recall from Lemma 1.1.101.1.10 that the line

spanned by a simple m-vector σ ∈ GCm(V ) is in the image of the Plücker embedding. Then the

injectivity of the latter mapping (Proposition 1.1.91.1.9) shows the existence of a unique m-dimensional

plane Pσ ∈ Gm(V ) such that ρ(Pσ) = [σ]∼. Then im (Lσ) = Pσ, so that

Hm(L−1
σ (B)) = Hm(L−1

σ (B ∩ Pσ)).

The isomorphism Lσ : Rm → Pσ induces an inner product on Pσ (see the introduction to Section 1.1.41.1.4

for details why this defines an inner product). Thus, we can choose an orthogonal basis of Pσ and

write σ = v1 ∧ v2 ∧ · · · ∧ vm where

〈vi, vj〉Pσ = 0 for i 6= j.

The collection of convex bodies in Rm, denoted by Cb(Rm), turns into a metric space by means of

the Hausdorff metric dH = dH,Rm given by

dH(A,B) = max

(
sup
a∈A

inf
b∈B
‖a− b‖Rm , sup

b∈B
inf
a∈A
‖a− b‖Rm

)

where ‖·‖Rm is the standard Euclidean norm on Rm (see [Tho96Tho96, Proposition 2.4.2, p. 61]). A result

from convex geometry states that the m-dimensional Lebesgue measure Lm on Rm is continuous on

the collection of compact convex sets in Rm with respect to the Hausdorff metric (see [Val68Val68, Satz 12.7,

p. 153] or [Bee74Bee74, p. 64]). Note that the m-dimensional Hausdorff measure equals the m-dimensional

Lebesgue measure on Rm (see [EG92EG92, Theorem 2, p. 70]).

Due to Lemma 1.2.161.2.16 (ii) and (iv), the set L−1
σ (B ∩ Pσ) is a symmetric convex body in Rm. Thus,
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B ∩ Pk

B ∩ P

L−1
σk

(B ∩ Pk)

L−1
σ (B ∩ P )

Rm V

Lσ

Lσkei

ej

v
(k)
i

vj = v
(k)
j

vi

Figure 2.1: Planes corresponding to simple m-vectors where B is an ellipsoid

it suffices to prove the continuity of the map

ϕ : GCm(V )→ Cb(Rm), σ = v1 ∧ v2 ∧ · · · ∧ vm 7→ L−1
σ (B ∩ Pσ)

where we chose an orthogonal basis {v1, v2, . . . , vm} of Pσ as stated above. Since Pσ and so 〈·, ·〉Pσ is

unique, this map is well-defined.

To show the continuity of ϕ, let (σk)k∈N ⊂ GCm(V ) be a sequence converging to σ ∈ GCm(V ).

Denote the corresponding m-dimensional planes by Pk and P and write σk = v
(k)
1 ∧ v(k)

2 ∧ · · · ∧ v(k)
m

and σ = v1 ∧ v2 ∧ · · · ∧ vm. Remember that we chose the bases of Pk and P to be orthogonal (in Pk

and P respectively). Further, we can rotate them within the planes Pk and P , so that

〈vi, vj〉P =
〈
v

(k)
i , v

(k)
j

〉
Pk

= 0 for i 6= j and all k ∈ N

and v
(k)
i −−−−→

k→∞
vi for i = 1, 2, . . . ,m.

Here the inner products 〈·, ·〉P and 〈·, ·〉Pk are induced by the isomorphisms Lσ : Rm → P and

Lσk : Rm → Pk respectively. We recall that the Plücker embedding is a topological embedding, that

is, a homeomorphism onto its image (see remark after Proposition 1.1.91.1.9). Therefore, if σk −−−−→
k→∞

σ

then Pk −−−−→
k→∞

P in Gm(V ).
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We need to estimate

dH
(
L−1
σk

(B) , L−1
σ (B)

)
= max

(
sup

a∈L−1
σk

(B)

inf
b∈L−1

σ (B)
‖a− b‖Rm , sup

b∈L−1
σ (B)

inf
a∈L−1

σk
(B)
‖a− b‖Rm

)

= max

(
sup

x∈B∩Pk
inf

y∈B∩P

∥∥L−1
σk
x− L−1

σ y
∥∥
Rm

, sup
y∈B∩P

inf
x∈B∩Pk

∥∥L−1
σk
x− L−1

σ y
∥∥
Rm

)
.

Hence, let x ∈ B ∩ Pk und y ∈ B ∩ P . Further, let Πk : V → Pk be the projection onto Pk. Then

∥∥L−1
σk
x− L−1

σ y
∥∥
Rm ≤

∥∥L−1
σk
x− L−1

σk
Πky

∥∥
Rm +

∥∥L−1
σk

Πky − L−1
σ y

∥∥
Rm

=
∥∥L−1

σk
Πk(x− y)

∥∥
Rm +

∥∥(L−1
σk

Πk − L−1
σ

)
y
∥∥
Rm

≤
∥∥L−1

σk
Πk

∥∥
L(V,Rm)

‖x− y‖Rm +
∥∥(L−1

σk
Πk − L−1

σ

)
y
∥∥
Rm

and similarly,

∥∥L−1
σk
x− L−1

σ y
∥∥
Rm ≤

∥∥L−1
σ Π

∥∥
L(V,Rm)

‖x− y‖Rm +
∥∥(L−1

σk
− L−1

σ Π
)
x
∥∥
Rm

where Π : V → P is the projection onto P . Thus, we can estimate

inf
y∈B∩P

∥∥L−1
σk
x− L−1

σ y
∥∥
Rm ≤ inf

y∈B∩P

(∥∥L−1
σk

Πk

∥∥
L(V,Rm)

‖x− y‖Rm +
∥∥(L−1

σk
Πk − L−1

σ

)
y
∥∥
Rm

)
≤ inf
y∈B∩P

∥∥L−1
σk

Πk

∥∥
L(V,Rm)

‖x− y‖Rm + sup
y∈B∩P

∥∥(L−1
σk

Πk − L−1
σ Π

)
y
∥∥
Rm

≤
∥∥L−1

σk
Πk

∥∥
L(V,Rm)

dist (x,B ∩ P ) +
∥∥L−1

σk
Πk − L−1

σ Π
∥∥
L(V,Rm)

(2.1.13)

and similarly,

inf
x∈B∩Pk

∥∥L−1
σk
x− L−1

σ y
∥∥
Rm ≤

∥∥L−1
σ Π

∥∥
L(V,Rm)

dist (y,B ∩ Pk) +
∥∥L−1

σk
Πk − L−1

σ Π
∥∥
L(V,Rm)

. (2.1.14)

Therefore, (2.1.132.1.13) and (2.1.142.1.14) together yield

dH,Rm
(
L−1
σk

(B) , L−1
σ (B)

)
≤ max

(∥∥L−1
σk

Πk

∥∥
L(V,Rm)

,
∥∥L−1

σ Π
∥∥
L(V,Rm)

)
dH,V (B ∩ Pk , B ∩ P )

+
∥∥L−1

σk
Πk − L−1

σ Π
∥∥
L(V,Rm)

.

(2.1.15)
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Since we chose the bases {v(k)
i }mi=1 ⊂ Pk and {vi}mi=1 ⊂ P so that v(k)

i −−−−→
k→∞

vi, we know that

‖Lσk − Lσ‖L(Rm,V ) = sup∑m
i=1(ai)2=1

∥∥∥∥∥
m∑
i=1

ai (Lσk − Lσ) ei

∥∥∥∥∥
V

≤ sup∑m
i=1(ai)2=1

m∑
i=1

|ai|
∥∥∥v(k)
i − vi

∥∥∥
V
−−−−→
k→∞

0,

that is, Lσk −−−−→
k→∞

Lσ in L(Rm, V ). Note that the linear map L−1
σk

Πk : V → Rm is the Moore-

Penrose pseudoinverse (or generalised inverse) of the linear map Lσk : Rm → Pk ⊂ V . All of the

mappings Lσk are of rank m. Under these conditions, the map sending a matrix to its Moore-Penrose

inverse is continuous (see [Rak91Rak91, Theorem 4.2, p. 166] and [Rak97Rak97]). Therefore, we have that

L−1
σk

Πk −−−−→
k→∞

L−1
σ Π in L(V,Rm). Thus, the second summand in (2.1.152.1.15) vanishes for k → ∞ and

consequently, the factor max
(∥∥L−1

σk
Πk

∥∥
L(V,Rm)

,
∥∥L−1

σ Π
∥∥
L(V,Rm)

)
is bounded above. It remains to

show that

dH,V (B ∩ Pk , B ∩ P ) −−−−→
k→∞

0.

This is true because Pk −−−−→
k→∞

P in Gm(V ) as stated earlier (see Figure 2.12.1). So, ϕ and therewith,

Abh is continuous. �
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2.2 Convexity of the two-dimensional Busemann–Hausdorff area density

Definition 2.2.1

A density A : GCm(V )→ R+ is called convex if it can be extended to an absolutely homogeneous,

continuous and convex function on the entire vector space
∧m

V .

Busemann proved in [Bus49Bus49] that the Busemann–Hausdorff area density is convex in codimension

one, that is, dim (V ) = m + 1, and the general case was left as a conjecture (see [Tho96Tho96, Problem

7.1.1, p. 310]). In their work [BI12BI12] Burago and Ivanov proved the conjecture for the two-dimensional

Busemann–Hausdorff area density. The next theorem is the main result of the present chapter. The

rest of this section will be devoted to extensively discuss Burago and Ivanov’s proof.

Theorem 2.2.2 (Convexity of the two-dimensional area density [BI12BI12, Theorem 1, p. 630])

In every finite-dimensional normed space V , the two-dimensional Busemann–Hausdorff area density

defined by (2.1.82.1.8) is convex on
∧2

V .

In what follows, we will present the geometric argument Burago and Ivanov used to prove their

statement. Using the language of convex geometry the statement will be reformulated into an inequality

for polytopes on the two-dimensional plane. In order to do so, let us first introduce the concept of a

calibrator for an m-dimensional density.

Definition 2.2.3 ([BI12BI12, Definition 2.1, p. 631])

Let V be a finite-dimensional vector space, A : GCm(V )→ R+ an m-dimensional density and P ⊂ V

an m-dimensional subspace. A calibrator or calibrating form for P with respect to A is an

exterior m-form ω ∈
∧m

(V ∗) ∼= (
∧m

(V ))∗ such that for every simple m-vector σ ∈ GCm(V ) one has

|ω(σ)| ≤ A(σ) and this inequality turns into equality if σ ∈ GCm(V ) ∩
∧m

(P ).

Notice that
∧m

(P ) is one-dimensional and therefore every m-vector in
∧m

(P ) is simple. So that

intersection GCm(V ) ∩
∧m

(P ) really is just
∧m

(P ) itself. The preceding notion of a calibrator is a

powerful concept because the following central result holds.

Lemma 2.2.4

An m-dimensional density A : GCm(V )→ R+ is convex on
∧m

(V ) if and only if every m-dimensional

plane P ∈ Gm(V ) admits a calibrator ωP ∈ (
∧m

(V ))
∗ with respect to A.

Proof: Suppose the m-dimensional density A admits an absolutely homogeneous, continuous and

convex extension A :
∧m

(V )→ R+. The following is due to [BRS12BRS12, p. 7]. The absolute homogeneity

and convexity of the extension imply that A is a sublinear functional because for σ, τ ∈
∧m

(V ) we
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have

A(σ + τ) = A

(
1

2
(2σ) +

1

2
(2τ)

)
≤ 1

2
A(2σ) +

1

2
A(2τ)

= A(σ) + A(τ).

Let P ∈ Gm(V ) be arbitrary and spanned be a basis {v1, v2, . . . , vm}. Recall that the top exterior

power
∧m

(P ) is
(
m
m

)
= 1-dimensional. Note that any element of the top exterior power

∧m
(P ) is of

the form λv1 ∧ v2 ∧ · · · ∧ vm, that is, any element is a simple m-vector or
∧m

(P ) = GCm(V )∩
∧m

(P ).

Let us define ωP,0 :
∧m

(P )→ R on this subspace by setting

ωP,0(λv1 ∧ v2 ∧ · · · ∧ vm) := λA(v1 ∧ v2 ∧ · · · ∧ vm).

This is a linear form on
∧m

(P ) and for ν ∈
∧m

(P ) we have

|ωP,0(ν)| = |ωP,0(λv1 ∧ v2 ∧ · · · ∧ vm)|

= |λA(v1 ∧ v2 ∧ · · · ∧ vm)|

= |λ|A(v1 ∧ v2 ∧ · · · ∧ vm)

= A(λv1 ∧ v2 ∧ · · · ∧ vm)

= A(ν) = A(ν)

where we used the fact that the density A is non-negative and absolutely homogeneous. Therefore,

ωP,0 is bounded above by A on the subspace
∧m

(P ).

Then the Hahn-Banach theorem ([Tho96Tho96, Theorem 1.3.2, p. 33]) applied to ωP,0 and A, asserts the

existence of a linear form wP :
∧m

(V )→ R such that

ωP (σ) = ωP,0(σ) for all σ ∈
∧m

(P )

and ωP (σ) ≤ A(σ) for all σ ∈
∧m

(V ).

In particular, this implies

|ωP (σ)| = A(σ) for all σ ∈
∧m

(P ) = GCm(V ) ∩
∧m

(P )

and |ωP (σ)| ≤ A(σ) for all σ ∈ GCm(V ).

So this m-form is a calibrator for P with respect to A.

Conversely, suppose every m-dimensional plane P admits a calibrator ωP ∈ (
∧m

(V ))
∗ with respect
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to A. Then the mapping |ωP | is convex because ωP is linear. In addition, for every P ∈ Gm(V ) the

density A is an upper bound to |ωP | on the domain GCm(V ) of A, that is, it holds that

|ωP (σ)| ≤ A(σ) for all σ ∈ GCm(V )

and |ωP (σ)| = A(σ) for all σ ∈ GCm(V ) ∩
∧m

(P ).
(2.2.16)

Construct the set of absolutely homogeneous, proper convex functions bounded above by A on

GCm(V ),

E :=
{
l :
∧m

(V )→ R+

∣∣∣ l
∣∣
GCm(V )

≤ A, l is absolutely homogeneous and proper convex
}
.

Note that by the preceding argumentation |ωP | ∈ E for every P ∈ Gm(V ), thus E is non-empty. Then

let us define the extension of A as its convex envelope , that is, set

A(σ) := conv (A)(σ) := sup
l∈E

l(σ)

for arbitrary σ ∈
∧m

(V ). The function A :
∧m

(V )→ R+ is convex because each l ∈ E is and

A(tσ + (1− t)ν) = sup
l∈E

l(tσ + (1− t)ν) ≤ sup
l∈E

tl(σ) + (1− t)l(ν)

≤ t sup
l∈E

l(σ) + (1− t) sup
l∈E

l(ν)

= tA(σ) + (1− t)A(ν).

Further, A is absolutely homogeneous since for σ ∈
∧m

(V ), λ ∈ R

A(λσ) = sup
l∈E

l(λσ) = sup
l∈E
|λ|l(σ) = |λ|A(σ).

For an arbitrary simple m-vector σ ∈ GCm(V ) there is a corresponding m-dimensional plane

Q ∈ Gm(V ) such that σ ∈
∧m

(Q), namely, if σ = v1 ∧ v2 ∧ · · · ∧ vm then Q := span {v1, v2, . . . , vm}.

(Recall the Plücker embedding – in particular, Lemma 1.1.101.1.10.)

Thus, for the calibrator ωQ of the plane Q the inequality

A(σ) = |ωQ(σ)| ≤ sup
l∈E

l(σ) = A(σ)
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holds. On the other hand, because each l ∈ E is bounded above by A on GCm(V ), we have

A(σ) = sup
l∈E

l(σ) ≤ sup
l∈E

A(σ) = A(σ).

by definition of E . So, A
∣∣
GCm(V )

≡ A and A is an absolutely homogeneous and convex extension of A.

It remains to show the continuity of A. Since each l ∈ E is proper the pointwise supremum over this set

nowhere takes the value −∞. On the set GCm(V ) the function A is bounded above by A which in turn

only takes finite values. Now let {e1, e2, . . . , en} be a basis for V . Let σ =
∑
I∈I a

I
σei1 ∧ ei2 ∧ · · · ∧ eim

be an arbitrary m-vector in
∧m

(V ). As usual, I denotes the set of strictly increasing multi-indices of

length m. Since A is convex and absolutely homogeneous, it is also sublinear by the same argument

as in the first part of the proof. Thus, it follows that

A(σ) ≤
∑
I∈I

∣∣aIσ∣∣A(ei1 ∧ ei2 ∧ · · · ∧ eim)

=
∑
I∈I

∣∣aIσ∣∣A(ei1 ∧ ei2 ∧ · · · ∧ eim) ≤ Ĉ
∑
I∈I

∣∣aIσ∣∣ .
where Ĉ := maxI∈I A(ei1 ∧ ei2 ∧ · · · ∧ eim) <∞. Note that the Hölder-inequality for p-norms implies

that

∑
I∈I

∣∣aIσ∣∣ =
∑
I∈I

∣∣aIσ∣∣ · 1 ≤
(∑
I∈I

∣∣aIσ∣∣2
) 1

2

·

(∑
I∈I

1

) 1
2

≤ D
(
n

m

) 1
2

‖σ‖∧m(V ).

Therein, we used the equivalence of norms on the finite-dimensional vector space
∧m

(V ), since(∑
I∈I

∣∣aIσ∣∣2) 1
2

is the Euclidean norm (see Corollary 1.1.121.1.12). Hence, we get for C := ĈD that

A(σ) ≤ C
(
n

m

) 1
2

‖σ‖∧m(V ). (2.2.17)

Let ε > 0 be arbitrary and consider an m-vector τ ∈
∧m

(V ) with ‖σ − τ‖∧m(V ) < ε. Then using the

sublinearity of A again yields

A(τ) = A((σ − τ) + σ) ≤ A(σ − τ) + A(σ)

≤ C
(
n

m

) 1
2 (
‖σ − τ‖∧m(V ) + ‖σ‖∧m(V )

)
< C

(
n

m

) 1
2 (
ε+ ‖σ‖∧m(V )

)
=: C̃(n,m, ε;σ) <∞

78



2.2 Convexity of the two-dimensional Busemann–Hausdorff area density

where we used (2.2.172.2.17) twice. Therefore, on a ball of radius ε > 0 centered at σ the convex function

A is bounded above by a finite constant C̃(n,m, ε;σ). Then a result from convex analysis ([Cla90Cla90,

Proposition 2.2.6, p. 34]) states that A is Lipschitz-continuous on this neighbourhood of σ. Since

σ ∈
∧m

(V ) was arbitrary we find that, in particular, A is continuous on
∧m

(V ). �

In what follows, we justify that we can make the subsequent simplifying assumption.

Assumption 2.2.5

The unit ball B of (V, ‖·‖V ) is a symmetric polytope.

Denote the closed unit ball of the n-dimensional normed space (V, ‖·‖V ) by B. Then the triangle

inequality and absolute homogeneity of the norm imply that the unit ball B is convex and symmetric.

It has non-empty interior because 0 ∈ B and ‖0‖V = 0 < 1. Since V is finite-dimensional B is a

compact set (see [Tho96Tho96, Theorem 1.2.6, p. 30]). Therefore, B is a symmetric, convex, compact set

with non-empty interior or in the terminology of Section 1.2.41.2.4 the unit ball B is a symmetric convex

body.

As stated earlier, the collection of convex bodies in V , denoted by Cb = Cb(V ) and the Hausdorff

metric dH = dH,V given by

dH(A,B) = max

(
sup
a∈A

inf
b∈B
‖a− b‖V , sup

b∈B
inf
a∈A
‖a− b‖V

)

turns into a metric space. A result from convex geometry (see [Tho96Tho96, Theorem 2.5.1, p. 64]) states

that the set of polytopes is dense in this metric space. In particular, this means that for a convex body

C ∈ Cb and any ε > 0 there is a polytope P contained in C such that dH(P,C) < ε. An analysis of

the proof of this density statement gives the following variation which shows that symmetric convex

bodies can be approximated by symmetric polytopes.

Lemma 2.2.6

If C is a symmetric convex body then for any ε > 0 there is a symmetric polytope P such that

dH(P,C) < ε.

Proof: The compactness of C implies that for any ε > 0 there is a finite set of points F ′ :=

{x1, x2, . . . , xN} ⊂ C such that C ⊂
⋃N
i=1Bε(xi) = F ′+ εB. Define F := F ′ ∪ (−F ′). (In the original

proof Thompson only chooses F := F ′.) Since C is symmetric, the extended set F is contained in C

as well. Of course, C ⊂ F + εB. Define the centrally symmetric polytope P := conv (F ). Since C is
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Chapter 2 The Busemann–Hausdorff definition of area in Finsler geometry

convex and taking the convex hull preserves inclusions, the sequence of set inclusions

P ⊂ conv (C) = C ⊂ F + εB ⊂ P + εB

holds. Hence, supp∈P infc∈C ‖p− c‖ = 0 by the first inclusion and supc∈C infp∈P ‖p− c‖ < ε by the

last. Therefore, P is a centrally symmetric polytope such that dH(P,C) < ε. �

If we apply the previous result to the convex body B for εl := 1
l , we may choose a sequence of

symmetric polytopes (Bl)l∈N ⊂ Cb such that Bl −−−→
l→∞

B in (Cb, dH). These polytopes are themselves

convex sets by definition of a polytope. Without loss of generality, we assume that each Bl is a convex

set of full dimension n (as defined in Section 1.2.11.2.1). Then each line through 0 meets Bl in a non-trivial

(because 0 is an interior point of Bl), closed and bounded segment (since Bl is closed and bounded

being a polytope, see Lemma 1.2.31.2.3). Then the Minkowski functional of each polytope Bl defined

by

‖x‖Bl := inf { t ∈ R+ | x ∈ tBl }, x ∈ V

is a norm on V (see [Tho96Tho96, Theorem 1.1.8, p. 17]). In addition, Bl is the closed ‖·‖Bl -unit ball. To

see the latter, let x ∈ V and ‖x‖Bl ≤ 1. Then by definition of the Minkowski functional x ∈ tBl ⊂ Bl
where t ≤ 1 is the infimum in the definition. Conversely, if x ∈ Bl then ‖x‖Bl ≤ 1.

Now we define the sequence of densities
(
Abhl

)
l∈N where each Abhl is the Busemann–Hausdorff

area density on the normed space
(
V, ‖·‖Bl

)
as defined by (2.1.82.1.8). Recall that the linear map

L = Lσ : Rm → V,Leα = vα for α = 1, 2, . . . ,m from the definition of the Busemann–Hausdorff area

density is an injective linear map (or bijective onto its image). The intersection Bl ∩ im (L) is a

symmetric polytope of dimension m because im (L) = span {v1, v2, . . . , vm} is an m-dimensional plane.

Due to Lemma 1.2.161.2.16 (ii) we therefore know that the preimage L−1(Bl) = L−1(Bl∩ im (L)) is a convex

body. Notice that if Bl −−−→
l→∞

B in (Cb(V ), dH,V ) then L−1(Bl) −−−→
l→∞

L−1(B) in (Cb(Rm), dH,Rm)

because

dH,Rm(L−1(Bl),L
−1(B))

= max

(
sup

x1∈L−1(Bl)

inf
x2∈L−1(B)

‖x1 − x2‖Rm , sup
x2∈L−1(B)

inf
x1∈L−1(Bl)

‖x1 − x2‖Rm

)

= max

(
sup
y1∈Bl

inf
y2∈B

∥∥L−1(y1 − y2)
∥∥
Rm , sup

y2∈B
inf
y1∈Bl

∥∥L−1(y1 − y2)
∥∥
Rm

)
≤
∥∥L−1

∥∥
L(im (L),Rm)

max

(
sup
y1∈Bl

inf
y2∈B

‖y1 − y2‖V , sup
y2∈B

inf
y1∈Bl

‖y1 − y2‖V

)
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2.2 Convexity of the two-dimensional Busemann–Hausdorff area density

=
∥∥L−1

∥∥
L(im (L),Rm)

dH,V (Bl, B) −−−→
l→∞

0.

As mentioned earlier, the Lebesgue measure Lm = Hm is continuous on the collection of compact

convex sets in Rm with respect to the Hausdorff metric (see [Val68Val68, Satz 12.7, p. 153] or [Bee74Bee74,

p. 64]). Thus, for any σ ∈ GCm(V ) we obtain

Abhl (σ) =
εm

Hm(L−1
σ (Bl))

−−−→
l→∞

εm

Hm(L−1
σ (B))

= Abh(σ) (2.2.18)

as l tends to infinity.

Let us assume that the convexity of the densities Abhl has already been proved. With (2.2.182.2.18) at

hand we will conclude the convexity of the original Busemann–Hausdorff area density Abh by using

Lemma 2.2.42.2.4. Let P ∈ Gm(V ) be a fixed plane in V and σ ∈ GCm(V ) an arbitrary simple m-vector.

Then the convexity of each Abhl yields a sequence of calibrating m-forms (wl)l∈N ⊂ (
∧m

(V ))
∗ for P

such that

|ωl(σ)| ≤ Abhl (σ) (2.2.19)

with equality if σ ∈ GCm(V ) ∩
∧m

(P ). The convergence of the sequence
(
Abhl (σ)

)
l∈N with limit

Abh(σ) has been established in (2.2.182.2.18). Hence, we find a number N ∈ N such that

|ωl(σ)| ≤ Abhl (σ) < Abh(σ) + 1

for all l > N . Therefore, the sequence (wl(σ))l∈N is bounded in R and by sequential compactness

there is a convergent subsequence (wlk(σ))k∈N. Passing to subsequences and renaming them, we find

that for fixed σ ∈
∧m

V both
(
Abhl (σ)

)
l∈N and (ωl(σ))l∈N converge and fulfil (2.2.192.2.19). Denote the

limit of the latter sequence by ω(σ) := liml→∞ ωl(σ). The assignment σ → ω(σ) is an m-form because

it is the pointwise limit of such forms. Indeed, it is the sought-after calibrating form for Abh because

it holds that

|ω(σ)| = lim
l→∞

|ωl(σ)| = lim sup
l→∞

|ωl(σ)|

≤ lim sup
l→∞

Abhl (σ) = lim
l→∞

Abhl (σ) = Abh(σ)

with equality if σ ∈ GCm(V ) ∩
∧m

(P ). This shows the convexity of the density Abh corresponding to

the initial normed space (V, ‖·‖V ) under the assumption that the densities Abhl corresponding to the

polyhedral unit balls Bl are convex already.
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Henceforth, Assumption 2.2.52.2.5 shall hold. We leave the general argumentation behind and focus

on the case m = 2. As Lemma 2.2.42.2.4 suggests, the convexity of the corresponding two-dimensional

Busemann–Hausdorff area density will be proved by explicitly constructing appropriate calibrators for

Abh and m = 2. We will reformulate the inequality Lemma 2.2.42.2.4 for a calibrator and prove a result of

convex geometry on the two-dimensional plane.

Let us fix a two-dimensional linear subspace P ∈ G2(V ) with basis {w1, w2} and consider its

intersection B ∩P with the unit ball. Since B is a symmetric polytope this intersection is a symmetric

polygon (a two-dimensional polytope) with vertices â1, â2, . . . , â2N ∈ V . Recall from Theorem 1.2.71.2.7

that there is a half-space representation so that B∩P is the intersection of finitely many half-spaces. Let

F i ∈ V ∗ be the linear form that supports B∩P on the segment [âi, âi+1] = { tâi1 +(1−t)âi | t ∈ [0, 1] }.

This means after appropriate scaling that F i
∣∣
B∩P ≤ 1 and F i

∣∣
[âi,âi+1]

= 1 (for this, we need that

0 ∈ int (B ∩ P ), see (1.2.151.2.15)). Further, let LP : R2 → V be the linear map that takes the standard

basis {e1, e2} of R2 to {w1, w2}, that is, LP ei = wi. Endowed with the standard Euclidean inner

product R2 is an inner product space and the standard basis is orthonormal with respect to this inner

product. Henceforth, whenever we use the words volume form and orientation we implicitly mean

the standard volume form ωe = e∗1 ∧ e∗2 corresponding to the standard basis and its induced standard

orientation as introduced in Section 1.1.41.1.4.

Consider the preimage KP := L−1
P (B ∩ P ) of the unit ball B in R2. This set corresponds to the

intersection B ∩ P . Then KP is a convex body due to Lemma 1.2.161.2.16 (ii). Furthermore, KP is the

intersection of the half-spaces
{
x ∈ R2 | f iP (x) ≤ 1

}
where f iP := F i ◦ LP ∈

(
R2
)∗ and therefore a

polytope in R2 (Lemma 1.2.161.2.16 (iii)). In addition, according to Lemma 1.2.161.2.16 (iv) KP is symmetric

because B is. Thus, KP = [a1a2 . . . a2N ] ⊂ R2 is a symmetric polygon with vertices ai = ai(P ) ∈ R2.

Suppose that the vertices are enumerated counterclockwise so that the 2-vectors ai ∧ aj are positively

oriented with respect to the standard volume form ωe = e∗1 ∧ e∗2 for 1 ≤ i < j ≤ N .

Define a 2-form ω ∈
∧2

(V ∗) by

ω = ω(P ) := π
∑

1≤i<j≤N

pipj F
i ∧ F j . (2.2.20)

and set the coefficients as the area ratio of the triangle ∆0aiai+1 = ∆0ai(P )ai+1(P ) := [0aiai+1] and

the entire polygon KP , namely

pi = pi(P ) := 2
H2(∆0aiai+1)

H2(KP )
∈ [0, 1]

82



2.2 Convexity of the two-dimensional Busemann–Hausdorff area density

for i = 1, 2, . . . , N . Note that by the symmetry of KP

H2(KP ) =

2N∑
i=1

H2(∆0aiai+1) = 2

N∑
i=1

H2(∆0aiai+1)

and thus
∑N
i=1 pi = 1.

We are going to prove that ω is a calibrator for P , that is, for all v1 ∧ v2 ∈ GC2(V ) we need to

show that

|ω(v1 ∧ v2)| ≤ Abh(v1 ∧ v2) (2.2.21)

with equality if v1 ∧ v2 ∈ GC2(V ) ∩
∧2

(P ).

Consider a simple 2-vector σ = v1 ∧ v2 ∈ GC2(V ) where v1, v2 ∈ V are linearly independent.

Denote the two-dimensional plane spanned by these two vectors by Q := span {v1, v2}. As σ runs

through GC2(V ) the corresponding plane runs through G2(V ) (once again, this uses the injectivity

of the Plücker embedding). The top exterior power
∧2

(P ) of the two-dimensional subspace P is

one-dimensional and therefore spanned by w1 ∧ w2. Thus, v1 ∧ v2 ∈ GC2(V ) ∩
∧2

(P ) if and only if

v1 ∧ v2 = cw1 ∧ w2. Recall from Section 1.1.31.1.3 on the Plücker embedding ρ : GC2(V )→ P
(∧2

(V )
)

that the latter means

ρ (Q) = ρ (span {v1, v2}) = [v1 ∧ v2]∼ = [w1 ∧ w2]∼ = ρ (span {w1, w2}) = ρ (P ) .

Since the Plücker embedding is injective by Proposition 1.1.91.1.9 we have the equivalence v1 ∧ v2 ∈

GC2(V ) ∩
∧2

(P ) if and only if Q = P .

Corresponding to the plane Q let LQ : R2 → V be the linear map such that the standard basis

{e1, e2} of R2 maps to {v1, v2}, that is, LQei = vi. The left-hand side of (2.2.212.2.21) then reads

|ω(v1 ∧ v2)| = |ω(LQ(e1) ∧ LQ(e2))|

= π

∣∣∣∣∣∣
∑

1≤i<j≤N

pipj
(
F i ∧ F j

)
(LQ(e1) ∧ LQ(e2))

∣∣∣∣∣∣
= π

∣∣∣∣∣∣
∑

1≤i<j≤N

pipj
((
F i ◦ LQ

)
∧
(
F j ◦ LQ

))
(e1 ∧ e2)

∣∣∣∣∣∣ .
Define f iQ := F i ◦ LQ ∈

(
R2
)∗. Any unit 2-vector σ in the top exterior power

∧2
(R2) is simple and

either has a representation σ = e1 ∧ e2 or σ = −e1 ∧ e2 (see Corollary 1.1.121.1.12). Because of the absolute
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value and the linearity of f iQ ∧ f
j
Q ∈

∧2
((

R2
)∗) ∼= (∧2 (R2

))∗
we can rewrite the last sum as

|ω(v1 ∧ v2)| = π sup


∣∣∣∣∣∣
∑

1≤i<j≤N

pipj

(
f iQ ∧ f

j
Q

)
(σ)

∣∣∣∣∣∣
∣∣∣∣∣∣ σ ∈ {e1 ∧ e2, e2 ∧ e1}


= π sup


∣∣∣∣∣∣
∑

1≤i<j≤N

pipj

(
f iQ ∧ f

j
Q

)
(σ)

∣∣∣∣∣∣
∣∣∣∣∣∣ ‖σ‖∧2(R2) = 1


= π

∥∥∥∥∥∥
∑

1≤i<j≤N

pipj f
i
Q ∧ f

j
Q

∥∥∥∥∥∥
(
∧2(R2))

∗

In the same way as earlier we can show that KQ := L−1
Q (B ∩ P ) is a symmetric polygon in R2. By

definition of the two-dimensional Busemann–Hausdorff area density in (2.1.82.1.8) the right-hand side of

(2.2.212.2.21) reads

Abh(v1 ∧ v2) =
ε2

H2(L−1
Q (B ∩ P ))

=
π

H2(KQ)
.

Thus, to prove that ω(P ) is a calibrator for the fixed plane P , we need to show for each plane

Q ∈ G2(V ) that ∥∥∥∥∥∥
∑

1≤i<j≤n

pi(P )pj(P ) f iQ ∧ f
j
Q

∥∥∥∥∥∥
(
∧2(R2))

∗

≤ 1

H2(KQ)
(2.2.22)

with equality if the plane Q coincides with the fixed plane P . Therein all dependencies on P and Q

have been explicitly stated and the coefficients are given by

pi(P ) = 2
H2(∆0ai(P )ai+1(P ))

H2(KP )
.

Note that the preceding discussion can similarly be made for arbitrary m. In fact, Burago and

Ivanov give a characterisation for the convexity of the higher-dimensional Busemann–Hausdorff area

density which is an m-dimensional analogue of (2.2.222.2.22) with coefficients µi1i2...im on the left-hand side.

The crux in the two-dimensional case is that one can choose µij = pipj so that the subsequent results

hold. Burago and Ivanov mention that the most straight-forward generalisation of the two-dimensional

construction (subdividing KP into tetrahedrons instead of triangles) does not work, [BI12BI12, Remark 4.2,

p. 637].

To show (2.2.222.2.22) we prove the following more general statement from convex geometry on the plane.
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Theorem 2.2.7 ([BI12BI12, Proposition 2.2, p. 632])

Let K ⊂ R2 be a symmetric convex polygon and suppose f1, f2, . . . , fN ∈
(
R2
)∗ are linear forms such

that f i
∣∣
K
≤ 1 for all i = 1, 2, . . . , N and p1, p2, . . . , pN ∈ [0, 1] such that

∑N
i=1 pi = 1. Then

∥∥∥∥∥∥
∑

1≤i<j≤N

pipj f
i ∧ f j

∥∥∥∥∥∥
(
∧2(R2))

∗

≤
∑

1≤i<j≤N

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ ≤ 1

H2(K)
.

In addition, if K is a convex 2N-gon with vertices a1, a2, . . . , a2N ∈ R2 and for i = 1, 2, . . . , N the

functions f i are supporting linear forms of K corresponding to its sides (such that f i
∣∣
[ai,ai+1]

= 1) and

pi = 2H2(∆0aiai+1)/H2(K) where ∆0aiai+1 := [0aiai+1] denotes the triangle with vertices 0, ai, ai+1,

then the above inequalities turn into equalities.

The convexity of the two-dimensional Busemann–Hausdorff area density – Theorem 2.2.22.2.2 – is an

immediate consequence of the previous result.

Proof of Theorem 2.2.22.2.2: Let P ∈ G2(V ) be arbitrary but fixed. Due to the preceding discussion

we need only show the inequality (2.2.222.2.22) for Q ∈ G2(V ) where equality holds if Q = P . As previously

shown KQ is a symmetric 2N -gon with vertices ai = ai(Q) and f iQ are supporting linear forms

corresponding to its sides. Further,
∑N
i=1 pi(P ) = 1. Theorem 2.2.72.2.7 for K = KQ yields the desired

inequality. If, in addition, Q = P note that the coefficient

pi(P ) = 2
H2(∆0ai(P )ai+1(P ))

H2(KP )
= 2
H2(∆0aiai+1)

H2(KQ)
= pi(Q)

which is the equality case in Theorem 2.2.72.2.7. Thus, ω = ω(P ) as defined in (2.2.202.2.20) is a indeed a

calibrator for P . Since P ∈ G2(V ) was arbitrary, Lemma 2.2.42.2.4 finally shows that the two-dimensional

Busemann–Hausdorff area density Abh admits a convex extension. �

In the rest of this chapter we will prove Theorem 2.2.72.2.7 through several elementary lemmata. The

next result provides us with a technical identity for the area of a polygon.

Lemma 2.2.8 ([BI12BI12, Lemma 2.3, p. 632])

Let K = [a1a2 . . . a2N ] be a symmetric 2N -gon in R2. For i = 1, 2, . . . , N define vi := ai+1− ai. Then

H2(K) =
∑

1≤i<j≤N

‖vi ∧ vj‖∧2(R2) =

∥∥∥∥∥∥
∑

1≤i<j≤N

vi ∧ vj

∥∥∥∥∥∥∧2(R2)

.

Proof: Note that the vertices of K are positively oriented. Then the convexity of the polygon K
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implies that the vectors vi – which correspond to the edges of K – are also positively oriented, that is,

ωe(vi ∧ vj) > 0 for any 1 ≤ i < j ≤ N .

Since K is symmetric we observe that H2(K) = 2H2([a1a2 . . . aN ]). Let us denote by ∆a1ajaj+1 :=

[a1ajaj+1] the triangle with vertices a1, aj , aj+1. Note that the intersection of any two of such triangles

is a set of two-dimensional Lebesgue measure zero. The polygon [a1a2 . . . aN ] is the union of all

triangles ∆a1ajaj+1 where j = 2, 3, . . . , N . Then by the countable additivity of Hausdorff measure

H2(K) = 2H2([a1a2 . . . aN ]) = 2

N∑
j=2

H2(∆a1ajaj+1). (2.2.23)

Observe further that the area of the triangle ∆a1ajaj+1 can be expressed via the norm of the wedge

product of its edges due to Proposition 1.1.151.1.15. Then

H2(∆a1ajaj+1) =
1

2
‖(aj − a1) ∧ (aj+1 − aj)‖∧2(R2) =

1

2
‖(aj − a1) ∧ vj‖∧2(R2).

By telescoping aj − a1 =
∑j−1
i=1 ai+1 − ai =

∑j−1
i=1 vi and

H2(∆a1ajaj+1) =
1

2
‖(aj − a1) ∧ vj‖∧2(R2) =

1

2

∥∥∥∥∥
j−1∑
i=1

vi ∧ vj

∥∥∥∥∥∧2(R2)

.

We apply Corollary 1.1.201.1.20 to the preceding identity and substitute the result into (2.2.232.2.23) which

finally yields

H2(K) = 2

N∑
j=2

H2(∆a1ajaj+1) = 2

N∑
j=2

1

2

∥∥∥∥∥
j−1∑
i=1

vi ∧ vj

∥∥∥∥∥∧2(R2)

=

N∑
j=2

j−1∑
i=1

‖vi ∧ vj‖∧2(R2)

=
∑

1≤i<j≤N

‖vi ∧ vj‖∧2(R2). �

The following lemma takes care of the equality case in Theorem 2.2.72.2.7.

Lemma 2.2.9 ([BI12BI12, Lemma 2.4, p. 633])

Let K = [a1a2 . . . a2N ] be a symmetric 2N -gon in R2. For i = 1, 2, . . . , N define vi := ai+1 − ai and

pi := 2H2(∆0aiai+1)/H2(K) and let f i ∈
(
R2
)∗ be such that f i

∣∣
K
≤ 1 and f i

∣∣
[ai,ai+1]

= 1. Then

pipj
∥∥f i ∧ f j∥∥(

∧2 (R2))
∗ =

1

(H2(K))
2 ‖vi ∧ vj‖∧2 (R2)
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for all i, j = 1, 2, . . . , N and therefore∥∥∥∥∥∥
∑

1≤i<j≤N

pipj f
i ∧ f j

∥∥∥∥∥∥
(
∧2(R2))

∗

=
∑

1≤i<j≤N

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ =

1

H2(K)
.

Proof: Define Si := 2H2(∆0aiai+1) > 0. Then by Corollary 1.1.201.1.20 the area of the parallelogram

spanned by ai and ai+1 can be expressed via Si = ‖ai ∧ ai+1‖∧2(R2). Of course, pi = Si/H2(K).

We recall from Section 1.1.41.1.4 that the standard area form ω = ωe induces a Riesz-type isomorphism

ιω : R2 →
(
R2
)∗ given by (1.1.81.1.8). We will now show that ιω(vi) = Sif

i. Note that there is no implied

summation on i in this formula. This is an equation in the dual space
(
R2
)∗, so we need to show

ιω(vi)(u) = ω(u ∧ vi) = Sif
i(u) for all u ∈ R2. Moreover, it suffices to prove this for a basis of R2

because both sides of the equation are linear functions. Observe that since K is convex, ai and

vi = ai+1 − ai are linearly independent vectors and hence form a basis of R2. Indeed, (again there is

no implied summation over i here)

Sif
i(vi) = Sif

i(ai+1 − ai) = Si(f
i(ai+1)− f(ai)) = Si(1− 1) = 0 = ω(0) = ω(vi ∧ vi)

because f i is linear and f i
∣∣
[ai,ai+1]

= 1. Further, by (1.1.71.1.7) calculate

Sif
i(ai) = Si = ‖ai ∧ ai+1‖∧2(R2) = ω(ai ∧ ai+1) = ω(ai ∧ (ai+1 − ai)) = ω(ai ∧ vi)

where the third equality uses that the 2-vectors ai ∧ ai+1 are positively oriented. The isometric

property of ιω that was established in Proposition 1.1.181.1.18 yields

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ =

1

(H2(K))
2SiSj

∥∥f i ∧ f j∥∥(
∧2(R2))

∗

=
1

(H2(K))
2

∥∥(Sif
i) ∧ (Sjf

j)
∥∥

(
∧2(R2))

∗

=
1

(H2(K))
2 ‖ιω(vi) ∧ ιω(vj)‖(∧2(R2))

∗

=
1

(H2(K))
2 ‖vi ∧ vi‖∧2(R2).

The second identity follows from Lemma 2.2.82.2.8 because

∑
1≤i<j≤N

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ =

1

(H2(K))
2

∑
1≤i<j≤N

‖vi ∧ vi‖∧2(R2)

=
1

(H2(K))
2H

2(K)
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=
1

H2(K)
.

Recall the Riesz-type isomorphism ιω induces a dual volume form ω∗ given by (1.1.111.1.11). The edges vi of

the polygon K are consistently (positively) oriented with respect to ω and therefore the corresponding

supporting linear forms f i are consistently (positively) oriented with respect to ω∗ because

ω∗(f i ∧ f j) =
1

SiSj
ω
(

(ιω)
−1

(Sif
i) ∧ (ιω)

−1
(Sjf

j)
)

=
1

SiSj
ω (vi ∧ vj) > 0

for 1 ≤ i < j ≤ N , wherein Si > 0. Finally, by Corollary 1.1.201.1.20∥∥∥∥∥∥
∑

1≤i<j≤N

pipj f
i ∧ f j

∥∥∥∥∥∥
(
∧2(R2))

∗

=
∑

1≤i<j≤N

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ =

1

H2(K)
. �

It remains to show the inequality part of Theorem 2.2.72.2.7. The next lemma takes care of the principal

case where the linear forms f i support the polygon K at its edges.

Lemma 2.2.10 ([BI12BI12, Lemma 2.5, p. 633])

Let K = [a1a2 . . . a2N ] be a symmetric 2N-gon in R2. For i = 1, 2, . . . , N let f i ∈
(
R2
)∗ be such

that f i
∣∣
K
≤ 1 and f i

∣∣
[ai,ai+1]

= 1. Let p1, p2, . . . , pN ∈ [0, 1] be nonnegative real numbers such that∑N
i=1 pi = 1. Then

∥∥∥∥∥∥
∑

1≤i<j≤N

pipj f
i ∧ f j

∥∥∥∥∥∥
(
∧2(R2))

∗

=
∑

1≤i<j≤N

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ ≤ 1

H2(K)
.

Proof: The first identity follows because all the 2-forms f i ∧ f j are of the same orientation for i < j

by the same argumentation as used in the proof of Lemma 2.2.92.2.9. Again for i = 1, 2, . . . , N define the

vectors vi := ai+1 − ai corresponding to the edges of K. Further, let qi := 2H2(∆0aiai+1)/H2(K)

and λi := pi/qi for i = 1, 2, . . . , N . Due to the first assertion of Lemma 2.2.92.2.9

qiqj
∥∥f i ∧ f j∥∥(

∧2 (R2))
∗ =

1

(H2(K))
2 ‖vi ∧ vj‖∧2 (R2).

Define the vectors v′i := λivi. By Lemma 1.2.151.2.15 there is a symmetric 2N -gon K ′ = [a′1a
′
2 . . . a

′
2N ] such

that a′i+1 − a′i = v′i for i = 1, 2, . . . , N . Then

∑
1≤i<j≤N

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ =

∑
1≤i<j≤N

λiλjqiqj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗
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=
1

(H2(K))
2

∑
1≤i<j≤N

λiλj‖vi ∧ vj‖∧2 (R2)

=
1

(H2(K))
2

∑
1≤i<j≤N

∥∥v′i ∧ v′j∥∥∧2 (R2)
.

Applying Lemma 2.2.82.2.8 to K ′ and substituting the result into the last equation yields

∑
1≤i<j≤N

pipj
∥∥f i ∧ f j∥∥(

∧2 (R2))
∗ =

H2(K ′)

(H2(K))
2 . (2.2.24)

Note that the 1-dimensional Lebesgue measure of the edges satisfy

L1
(
[a′i, a

′
i+1]

)
= ‖v′i‖R2 = λi‖vi‖R2 = λiL1 ([ai, ai+1])

by construction of K ′. Consider the support function hK of the convex set K. By virtue of

Proposition 1.2.61.2.6 the value hi := hK

(
fi

‖fi‖(R2)∗

)
is the distance of 0 ∈ K to the edge [ai, ai+1]

corresponding to f i. Then the two-dimensional Hausdorff measure of the triangle ∆0aiai+1 is given

by

H2(∆0aiai+1) =
1

2
hiL1 ([ai, ai+1]) .

Now we can calculate

1 =

N∑
i=1

pi =

N∑
i=1

λiqi =
2

H2(K)

N∑
i=1

λiH2(∆0aiai+1)

=
2

H2(K)

1

2

N∑
i=1

λihiL1 ([ai, ai+1])

=
1

H2(K)

1

2

2N∑
i=1

hiL1
(
[a′i, a

′
i+1]

)
(2.2.25)

where we used the symmetry of K to extend the sum in the last equality. The explicit formula for

mixed volume in Lemma 1.2.141.2.14 (use A = K ′ and K = K) shows that

1

2

2N∑
i=1

hiL1
(
[a′i, a

′
i+1]

)
= V (K ′,K).

The preceding identity (2.2.252.2.25) thus transforms to

H2(K) = V (K ′,K).
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Now we use the Minkowski inequality for convex bodies (Proposition 1.2.121.2.12) to see that

(
H2(K)

)2

=
(

V (K ′,K)
)2

≥ H2(K ′)H2(K)

or, equivalently, H2(K) ≥ H2(K ′). Using this estimate on (2.2.242.2.24) proves the assertion of the lemma.�

Finally, we can complete the proof of Theorem 2.2.72.2.7 which in turn implies the convexity of the

two-dimensional Busemann–Hausdorff area density as already shown. Thus, what follows concludes

this chapter.

Proof of Theorem 2.2.72.2.7: By means of Lemma 2.2.92.2.9 and Lemma 2.2.102.2.10 it remains to show the

inequality for the case where K is a symmetric polygon (not necessarily with 2N vertices) and the

linear forms f1, f2, . . . , fN ∈
(
R2
)∗ are such that f i

∣∣
K
≤ 1. The triangle inequality for ‖·‖(∧2(R2))

∗

yields ∥∥∥∥∥∥
∑

1≤i<j≤N

pipj f
i ∧ f j

∥∥∥∥∥∥
(
∧2(R2))

∗

≤
∑

1≤i<j≤N

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ .

Thus, we need to show that

∑
1≤i<j≤N

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ ≤ 1

H2(K)
. (2.2.26)

Consider the left hand side of (2.2.262.2.26) as a function in just one variable fk with the remaining f i for

i 6= k staying fixed and let us call this function Gk. Then Gk is a convex function because it is the

sum of the norms of 2-forms. Recall the definition of the polar set K◦ from (1.2.161.2.16). Then f i ∈ K◦.

Furthermore, the polar set of a polygon is itself a polygon by Proposition 1.2.91.2.9. This means that Gk

is a convex function mapping the polar polygon K◦ to R. In addition, Gk is bounded above because

K◦ is bounded as a polytope and for each of the summands

∥∥f i ∧ f j∥∥2

(
∧2(R2))

∗ = det

〈fi, fi〉(R2)∗ 〈fi, fj〉(R2)∗

〈fj , fi〉(R2)∗ 〈fj , fj〉(R2)∗


= ‖fi‖2(R2)∗‖fj‖

2
(R2)∗ − 2〈fi, fj〉(R2)∗

≤ ‖fi‖2(R2)∗‖fj‖
2
(R2)∗ + 2‖fi‖(R2)∗‖fj‖(R2)∗

=
(
‖fi‖(R2)∗ + ‖fj‖(R2)∗

)2

< (2R)2

where R > 0 such that K◦ is contained in the ball BR(0) ⊂ (R2)∗ of radius R. Proposition 1.2.181.2.18
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shows that Gk attains its maximum on a vertex of K◦. But by Lemma 1.2.101.2.10 the vertices of K◦ are

the linear forms that support K at its edges. Thus, it suffices to show (2.2.262.2.26) for the case where the

f i are (possibly duplicate) linear forms supporting K at its edges. Now if any two of the functions f i

and f j coincide (without loss of generality f1 = fN ) the problem can be reduced to a smaller number

of functions by proceeding as follows. Calculate on the left hand side of (2.2.262.2.26)

∑
1≤i<j≤N

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ =

N−1∑
i=1

N∑
j=i+1

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗

=

N∑
j=2

p1pj
∥∥f1 ∧ f j

∥∥
(
∧2(R2))

∗ +

N−1∑
i=2

N∑
j=i+1

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ .

By expanding the second sum and using f1 ∧ fN = 0 on the first sum this reduces to

∑
1≤i<j≤N

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ =

N−1∑
j=2

p1pj
∥∥f1 ∧ f j

∥∥
(
∧2(R2))

∗

+

N−1∑
i=2

 N−1∑
j=i+1

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ + pipN

∥∥f i ∧ fN∥∥(
∧2(R2))

∗


=

N−1∑
j=2

p1pj
∥∥f1 ∧ f j

∥∥
(
∧2(R2))

∗ +

N−1∑
i=2

pipN
∥∥f i ∧ fN∥∥(

∧2(R2))
∗

+

N−2∑
i=2

N−1∑
j=i+1

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗

Again we can use that f1 = fN and thus,

∥∥f1 ∧ f i
∥∥

(
∧2(R2))

∗ =
∥∥−f i ∧ fN∥∥(

∧2(R2))
∗ =

∥∥f i ∧ fN∥∥(
∧2(R2))

∗ .

Renaming the indices in the first two sums then yields

∑
1≤i<j≤N

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ =

N−1∑
j=2

(p1 + pN )pj
∥∥f1 ∧ f j

∥∥
(
∧2(R2))

∗+

N−2∑
i=2

N−1∑
j=i+1

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗

=

N−2∑
i=1

N−1∑
j=i+1

p′ip
′
j

∥∥f i ∧ f j∥∥(
∧2(R2))

∗

where p′1 := p1 + pN and p′i := pi for i > 1. That is, the problem can be reduced to a smaller

number of functions by dropping fN from the list of functions and replacing the set of coefficients by

p1 + pN , p2, . . . , pN−1. Additionally, note that changing the sign of one of the functions f i does not
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change the left hand side of (2.2.262.2.26). Therefore, it further suffices to assume that all the functions

±f1,±f2, . . . ,±fN are distinct.

If N = 1 then the left hand side of (2.2.262.2.26) equals zero and the inequality holds trivially. Therefore,

suppose N > 1 and consider the polyhedral set given by the half-space representation

K ′ :=

N⋂
i=1

{x ∈ R2 |
∣∣f i(x)

∣∣ ≤ 1}.

Since K is symmetric and f i
∣∣
K
≤ 1 by hypothesis, we know that f i(x) ≤ 1 and −f i(x) = f i(−x) ≤ 1

for i = 1, 2, . . . , N and any x ∈ K. Therefore,
∣∣f i(x)

∣∣ ≤ 1 for i = 1, 2, . . . , N and any x ∈ K. In other

words, K ⊂ K ′. Therefore,

H2(K) ≤ H2(K ′). (2.2.27)

Observe that K ′ is a symmetric polyhedral set and that ±f1,±f2, . . . ,±fN are those linear forms

which give the half-space representation. By our assumption they correspond to N distinct pairs of

opposing supporting hyperplanes. Since N ≥ 2 there are at least two distinct pairs of such opposing

supporting hyperplanes. Every polyhedral set in the two-dimensional space R2 that is supported by

at least two distinct pairs of opposing hyperplanes is consequently bounded. Thus, K ′ is a bounded,

polyhedral set which means by Theorem 1.2.71.2.7 that K ′ is a polygon. In two dimensions the number

of vertices and facets (which are its edges) coincide (see [Brø83Brø83, §16 Euler’s Relation, Theorem 16.1,

p. 98]). Thus, K ′ is a 2N -gon. By definition of K ′ through its half-space representation, we see that

f i are linear forms that support K ′ at its edges. Then all the prerequisites to apply Lemma 2.2.102.2.10 to

K ′ are fulfilled. Using this fact and (2.2.272.2.27) finally proves (2.2.262.2.26) because

∑
1≤i<j≤N

pipj
∥∥f i ∧ f j∥∥(

∧2(R2))
∗ ≤ 1

H2(K ′)
≤ 1

H2(K)
. �
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Chapter 3

The Plateau problem in arbitrary codimension in the

Finsler setting

In this final chapter we formulate and solve the Plateau problem in n-dimensional Finsler space (Rn, F )

for a reversible Finsler metric F . To achieve this goal, we first reference the work of Hildebrandt and

von der Mosel in which they developed the theory of Cartan functionals. We state their result on the

Plateau problem for Cartan integrands (Theorem 3.2.13.2.1). Finally, we solve the Plateau problem in

the Finsler setting by identifying the Busemann–Hausdorff area integrand aFm as a Cartan integrand

for m = 2. For that, we use the convexity of the area integrand which we established in Chapter 22.

Further, we use a representation of the area integrand, found by Overath in [Ove13Ove13].

3.1 Formulation of the Plateau problem in Finsler space

In this section we formalise the Plateau problem which was mentioned in the introduction. Let us

recall the question it poses:

Given a closed rectifiable Jordan curve Γ, is there a minimal surface spanned by Γ?

For the following, denote the two-dimensional Euclidean unit ball in R2 by B. Its boundary is the set

of vectors of Euclidean unit length and we denote it by S1.

A curve in Rn is a continuous mapping c : [a, b] → Rn of an interval [a, b] into Rn. If a curve is

injective then we call it a simple curve . A curve c is said to be a closed curve if c(a) = c(b). We

can reparametrise a curve to be a continuous mapping c : S1 → Rn (Consider the map c ◦ ϕ−1 where

ϕ : [a, b] → S1, t 7→
(

cos
(

2π t−ab−a

)
, sin

(
2π t−ab−a

))
). The image Γ = im (c) of a simple closed curve

c : S1 → Rn is called a Jordan curve. A rectifiable curve is a curve of finite Euclidean length ,
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Chapter 3 The Plateau problem in arbitrary codimension in the Finsler setting

that is,

L|·|(c) =

∫
S1
|ċ(t)| dt <∞.

Suppose Γ is a closed Jordan curve in Rn and let ϕ : S1 → Γ be a homeomorphism from S1 onto Γ.

Then a continuous mapping ψ : S1 → Γ from S1 onto Γ is said to be weakly monotonic if there is a

non-decreasing continuous function τ : [0, 2π]→ R with τ(0) = 0, τ(2π) = 2π such that

ψ(cos(θ), sin(θ)) = ϕ(cos(τ(θ)), sin(τ(θ)))

for 0 ≤ θ ≤ 2π (see [DHKW92DHKW92, Definition 2, p. 231]).

We now define the class of admissible surfaces for the Plateau problem. Recall that every function

X ∈ W 1,2(B,Rn) has a trace X
∣∣
S1 on the boundary S1 which is of class L2(S1,Rn) (see [Eva10Eva10,

Theorem 1, p. 272])

Given a closed Jordan curve Γ in Rn, a mapping X : B → Rn is said to be of class C(Γ) if and

only if X ∈W 1,2(B,Rn) and its trace X
∣∣
S1 can be represented by a weakly monotonic, continuous

mapping ϕ : S1 → Γ of S1 onto Γ (which means, every L2(S1,Rn)-representative of X
∣∣
S1 coincides

with ϕ except for a subset of zero one-dimensional Hausdorff measure). One can show that C(Γ) is

non-empty if the Jordan curve Γ is rectifiable (see [DHKW92DHKW92, pp. 233-234]).

Finally, we can formulate the Plateau problem for Finsler area mentioned above. Notice that for

n = 3 this coincides with the Plateau problem in [OvdM14OvdM14, Theorem 1.2, p. 278].

Theorem 3.1.1 (Plateau problem for Finsler area in arbitrary codimension )

Let F be a reversible Finsler metric on Rn and assume in addition that

0 < mF := inf
Rn×Sn−1

F (·, ·) ≤ sup
Rn×Sn−1

F (·, ·) = ‖F‖L∞(Rn×Sn−1) =: MF <∞.

Then for any given rectifiable Jordan curve Γ ⊂ Rn there exists a surface X ∈ C(Γ), such that

areaFB(X) = inf
C(Γ)

areaFB(·).

In addition, the minimiser X is Euclidean conformally parametrised almost everywhere on B, that is,

∣∣∣∣ ∂X∂u1

∣∣∣∣2 =

∣∣∣∣ ∂X∂u2

∣∣∣∣2 and
〈
∂X

∂u1
,
∂X

∂u2

〉
R2

= 0 H2– a.e. on B.
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Furthermore, the minimiser X has the following regularity property,

X ∈ C0
(
B,Rn

)
∩ C0,σ (B,Rn) ∩W 1,q (B,Rn)

for σ :=
(
mF
MF

)2

∈ (0, 1] and some q > 2.
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3.2 Cartan functional theory

In the work of Hildebrandt and von der Mosel [HvdM99HvdM99, HvdM02HvdM02, HvdM03aHvdM03a, HvdM03bHvdM03b, HvdM03cHvdM03c,

HvdM05HvdM05, HvdM09HvdM09] the theory of Cartan (or parametric) functionals has been developed. In particular,

the Plateau problem for Cartan integrands has been solved and higher regularity of the minimizers

has been established. We want to apply their theory to the Busemann–Hausdorff area integrand and

prove Theorem 3.1.13.1.1 from the preceding section.

First, let us define the basics of Cartan functional theory. For two integers n,m with n ≥ m, set N :=(
n
m

)
. Recall from Corollary 1.1.131.1.13 that we can isometrically identify the spaces

(∧m
(Rn), ‖·‖∧m(Rn)

)
and

(
RN , | · |

)
where | · | is the standard Euclidean norm on RN . We denote the image of the set

GCm(Rn) ⊂
∧m

(Rn) under this identification as GCm(Rn) ⊂ RN .

A function I : Rn × RN → R is called a Cartan integrand if it is continuous, that is,

I ∈ C0
(
Rn × RN

)
(R)

and if it is homogeneous of degree one in its second variable, that is,

I(x, tz) = tI(x, z) for all t > 0, (x, z) ∈ Rn × RN . (H)

A Cartan integrand I is said to be positive definite if there are two constants M1 and M2 with

0 < M1 ≤M2 such that

M1|z| ≤ I(x, z) ≤M2|z| for all (x, z) ∈ Rn ×GCm(Rn). (D)

A Cartan integrand I is said to be semi–elliptic on Ω× RN for Ω ⊂ Rn if it is convex in its second

variable, that is, if

I(x, tz1 + (1− t)z2) ≤ tI(x, z1) + (1− t)I(x, z2) for all x ∈ Ω, z1, z2 ∈ RN and t ∈ [0, 1]. (C)

Given a Cartan integrand I we can define the Cartan functional I in the following way. Suppose

M is a smooth m-manifold and X : M→ Rn a smooth immersion. Then we define

I(X) :=

∫
p∈M

i(p),

where the differential m-form i onM is given in local coordinates (u1, u2, . . . , um) : U ⊂M→ Ω ⊂ Rn
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3.2 Cartan functional theory

by

i(p) := I

(
X(p), dXp

(
∂

∂u1

∣∣∣∣
p

)
∧ dXp

(
∂

∂u2

∣∣∣∣
p

)
∧ · · · ∧ dXp

(
∂

∂um

∣∣∣∣
p

))
.

This form is well-defined globally due to its invariance under a coordinate change ([Ove13Ove13, p. 47]). If

we chooseM = Ω for an open subset Ω ⊂ Rm and (uα) to be the standard coordinates on Rm, then

I(X) computes to

I(X) =

∫
u∈Ω

I

(
X(u),

∂X

∂u1
(u) ∧ ∂X

∂u2
(u) ∧ · · · ∧ ∂X

∂um
(u)

)
du1du2 . . . dum.

The value I(X) can be guaranteed to be finite by assuming X ∈W 1,m(Ω,Rn) and I to satisfy the

positive definiteness relation (DD). We can see this by combining these assumptions, Lemma 1.1.141.1.14

and the identification RN ∼=
∧m

(Rn) to get the estimate

I

(
X(u),

∂X

∂u1
(u) ∧ ∂X

∂u2
(u) ∧ · · · ∧ ∂X

∂um
(u)

)
≤M2

∣∣∣∣ ∂X∂u1
(u) ∧ ∂X

∂u2
(u) ∧ · · · ∧ ∂X

∂um
(u)

∣∣∣∣
= M2

∥∥∥∥ ∂X∂u1
(u) ∧ ∂X

∂u2
(u) ∧ · · · ∧ ∂X

∂um
(u)

∥∥∥∥∧m(Rn)

≤M2

m∏
i=1

∥∥∥∥∂X∂ui (u)

∥∥∥∥
Rn

= M2

m∏
i=1

∣∣∣∣∂X∂ui (u)

∣∣∣∣ .
On the last expression we can apply the inequality of arithmetic and geometric means and the Hölder

inequality and get

M2

m∏
i=1

∣∣∣∣∂X∂ui (u)

∣∣∣∣ ≤M2
1

mm

(
m∑
i=1

∣∣∣∣∂X∂ui (u)

∣∣∣∣
)m
≤M2

1

mm
mm−1

m∑
i=1

∣∣∣∣∂X∂ui (u)

∣∣∣∣m .
Thus, it follows that

I(X) =

∫
u∈Ω

I

(
X(u),

∂X

∂u1
(u) ∧ ∂X

∂u2
(u) ∧ · · · ∧ ∂X

∂um
(u)

)
du1du2 . . . dum

≤M2
1

m

∫
u∈Ω

m∑
i=1

∣∣∣∣∂X∂ui (u)

∣∣∣∣m du1du2 . . . dum

≤M2
1

m
‖X‖mW 1,m(B,Rn) <∞.

Hildebrandt and von der Mosel proved the following result on the minimisation of the Cartan
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functional in the class of admissible surface C(Γ) introduced in Section 3.13.1. Note that therein we chose

M = B as the parameter domain of the competing surfaces X. Further, m = 2 and X ∈W 1,2(B,Rn)

for X ∈ C(Γ) such that the value of the Cartan functional is finite by the preceding calculation.

Theorem 3.2.1 (Plateau problem for Cartan integrands, [HvdM03bHvdM03b, Theorems 1.4 and 1.5, p. 928])

Suppose I : Rn × RN → R satisfies (RR), (HH), (DD) and (CC). Then for any given rectifiable Jordan

curve Γ ⊂ Rn there exists a surface X ∈ C(Γ), such that

I(X) = inf
C(Γ)
I(·).

In addition, the minimiser X is Euclidean conformally parametrised almost everywhere on B, that is,

∣∣∣∣ ∂X∂u1

∣∣∣∣2 =

∣∣∣∣ ∂X∂u2

∣∣∣∣2 and
〈
∂X

∂u1
,
∂X

∂u2

〉
R2

= 0 H2– a.e. on B.

Furthermore, the minimiser X has the following regularity property,

X ∈ C0
(
B,Rn

)
∩ C0,σ (B,Rn) ∩W 1,q (B,Rn)

for σ :=
(
mF
MF

)2

∈ (0, 1] and some q > 2.

Note that in [HvdM03bHvdM03b] a Cartan integrand is called positive definite if the inequalities in (DD) hold

for all of Rn × RN . However, an analysis of their proof shows that condition (DD) as stated above

suffices to prove Theorem 3.2.13.2.1.
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3.3 Representing the Busemann–Hausdorff area as a Cartan functional

To prove Theorem 3.1.13.1.1, we wish to identify the two-dimensional Busemann–Hausdorff area integrand

aF2 for a reversible Finsler metric on N = Rn as a positive definite, semi-elliptic Cartan integrand.

Recall from (2.1.62.1.6) that aFm is the function

aFm :
⊔
q∈N

GCm(TqRn)→ R+,

(q, w1 ∧ w2 ∧ · · · ∧ wm) 7→ εm
Hm ({v ∈ Rm | F (q, vαwα) ≤ 1})

where we sum over Greek indices α = 1, 2, . . . ,m.

As discussed in the previous chapter, the tangent spaces TqRn are canonically isomorphic to Rn

itself and we mentioned above that
∧m

(TqRn) ∼=
∧m

(Rn) ∼= RN . So we can identify the disjoint

union as

⊔
q∈Rn

∧m
(TqRn) ∼=

⊔
q∈Rn

RN =
⋃
q∈Rn
{q} × RN = Rn × RN . (3.3.1)

One can show that
⊔
q∈N

∧m
(TqN ) is a vector bundle of rank N (see [Lee13Lee13, Exercise 14.14,

p. 359]). In fact, if N = Rn then it is a trivial bundle which means that the identification (3.3.13.3.1) is a

homeomorphism. Under this identification, the Busemann–Hausdorff area integrand aFm is a function

mapping the subset Rn ×GCm(Rn) ⊂ Rn × RN to R+.

Recall as well that by (2.1.92.1.9)

aFm(q, v1 ∧ v2 ∧ · · · ∧ vm) = Abhq,m(v1 ∧ v2 ∧ · · · ∧ vm)

for q ∈ Rn and v1 ∧ v2 ∧ · · · ∧ vm ∈ GCm(Rn). Therein, Abh = Abhq,m was the m-dimensional

Busemann–Hausdorff area density for the normed space (Rn, F (q, ·)) ∼= (TqRn, F (q, ·)).

3.3.1 Semi–ellipticity and homogeneity of aF2 on Rn × RN

For m = 2 (and thus N =
(
n
2

)
) we showed in Theorem 2.2.22.2.2 that the two-dimensional Busemann–

Hausdorff area density Abhq,2 : GC2(Rn) ∼= GC2(Rn)→ R+ is convex, that is, it admits an absolutely

homogeneous, continuous and convex extension A = Aq,2 :
∧2

(Rn) ∼= RN → R+ (see Definition 2.2.12.2.1)

Therefore, the two-dimensional Busemann–Hausdorff area integrand extends to a function

aF2 : Rn × RN → R+, (q, σ) 7→ Aq,2(σ)
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Chapter 3 The Plateau problem in arbitrary codimension in the Finsler setting

which we call the extended two-dimensional Busemann–Hausdorff area integrand .

Since A is convex for every normed space (Rn, F (q, ·)), the function aF2 is convex in its second

variable and therefore the extended two-dimensional Busemann–Hausdorff area integrand is semi-

elliptic on Rn×RN , that is, (CC) holds. Further, aF2 is homogeneous of degree one in its second variable

because A is and so, (HH) holds.

3.3.2 Continuity of aF2 on Rn × RN

For the regularity of aF2 , we consider the extended Busemann–Hausdorff area integrand as a mapping

from
⊔
q∈Rn

∧2
(TqRn) to R.

Theorem 3.3.1 (Continuity of aF
2 )

The extended two-dimensional Busemann–Hausdorff area integrand aF2 :
⊔
q∈Rn

∧2
(TqRn)→ R+ is a

continuous function.Therefore, by using the identification (3.3.13.3.1)

aF2 ∈ C0(Rn × RN ),

that is, the condition (RR) holds true.

Proof: We recall that aF2 (q, σ) = Aq,2(σ) for (q, σ) ∈
⊔
q∈Rn

∧2
(TqRn). Each of the extensions Aq,2

is a continuous function by Theorem 2.2.22.2.2 and Definition 2.2.12.2.1. Since Rn is a smooth manifold, we

know that its tangent spaces TqRn vary continuously in q. Thus, aF2 is also continuous in its first

variable. Using local trivialisations of the vector bundle
⊔
q∈Rn

∧2
(TqRn), it then follows that aF2 is

continuous on all of
⊔
q∈Rn

∧2
(TqRn). �

3.3.3 Positive definiteness of aF2 on Rn × RN

Condition (DD) is only a condition on Rn × GCm(Rn). Therefore, we need only show it for the

Busemann–Hausdorff area integrand and not for its extension. In fact, (DD) holds true for aFm for

arbitrary m as we will see in the following. In the work of Overath [Ove13Ove13] it was found that the

Busemann–Hausdorff area integrand can be represented as a spherical integral. This result will provide

us with a way to quantify the positive definiteness of aFm.

Theorem 3.3.2 (Spherical integral representation of aF
m, [Ove13Ove13, Theorem 2.1.6, p. 70])

Let n ≥ m > 0, (Nn, F ) be a Finsler manifold where F is strictly positive on TN \ o. Let q ∈ N and
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3.3 Representing the Busemann–Hausdorff area as a Cartan functional

w1 ∧ w2 ∧ . . . ∧ wm ∈ GCm(TqN ). Then we have

aFm(q, w1 ∧ w2 ∧ · · · ∧ wm) =

(
1

Hm−1(Sm−1)

∫
Sm−1

1

(F (q, θαwα))
m dS(θ)

)−1

. (3.3.2)

Therein dS(θ) is the spherical measure and Sm−1 = {x ∈ Rm | |x| = 1} is the m-dimensional

Euclidean unit sphere.

Proof: We need only rewrite the Hausdorff measure in expression (2.1.62.1.6) by a change of variables

(see [For09For09, Satz 8, p. 144]). Using polar coordinates we can write any v = (vα)mα=1 ∈ Rm as v = sθ

where θ = v/ |v| ∈ Sm−1 and s = |v| ∈ [0,∞). Then

Hm ({v ∈ Rm | F (q, vαwα) ≤ 1})

=

∫
Rm

χ{v∈Rm | F (q,vαwα)≤1}(x)dLm(x)

=

∫
Sm−1

∫ ∞
0

χ{
(rθ′)∈Rm

∣∣ F (q,rθ′αwα)≤1
}(sθ)sm−1dsdS(θ)

wherein χM is the characteristic function of M , that is, χM (z) := 1 if z ∈ M and 0 otherwise.

The Finsler metric F is positive homogeneous in its second component by definition. Further, F is

strictly positive on TN \ o. Therefore,

∫
Sm−1

∫ ∞
0

χ{
(rθ′)∈Rm

∣∣ F (q,rθ′αwα)≤1
}(sθ)sm−1dsdS(θ)

=

∫
Sm−1

∫ ∞
0

χ{
(rθ′)∈Rm

∣∣ r≤(F (q,θ′αwα))−1
}(sθ)sm−1dsdS(θ)

=

∫
Sm−1

∫ (F (q,θαwα))−1

0

sm−1dsdS(θ)

=

∫
Sm−1

1

m (F (q, θαwα))
m dS(θ).

Substituting into (2.1.62.1.6) and using Hm−1(Sm−1) = mHm(Bm1 (0)) = mεm, we find

aFm(q, w1 ∧ w2 ∧ · · · ∧ wm) =
εm∫

Sm−1
1

m(F (q,θαwα))m dS(θ)

=

(
1

Hm−1(Sm−1)

∫
Sm−1

1

(F (q, θαwα))
m dS(θ)

)−1

. �

The next result shows that the Busemann–Hausdorff area integrand coincides with the classical

area integrand in the case that the Finsler metric is the Euclidean norm.
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Lemma 3.3.3 (Euclidean area integrand)

Define F : Rn × Rn → R+ by F (q, v) := |v| where | · | is the Euclidean norm on Rn. Then F is a

Finsler metric on Rn which is strictly positive on Rn × (Rn \ {0}) and

a|·|m(q, σ) = |σ| for all (q, σ) ∈ Rn ×GCm(Rn) (3.3.3)

where | · | denotes the n-dimensional Euclidean norm on the left-hand side and the
(
n
m

)
-dimensional

one on the right-hand side.

Proof: Clearly, F is non-negative on Rn × Rn, strictly positive on Rn × (Rn \ {0}) and positively

homogeneous in its second argument. In addition, F ∈ C∞ (Rn × (Rn \ {0})) ∩ C0(Rn × Rn). Note

that

F (q, v) =
(
δijv

ivj
) 1

2

where δij is the Kronecker delta. Then the numbers

gij(q, v) =
1

2

∂2

∂vi∂vj
F 2(q, v) =

1

2
δij

form a positive definite matrix, so that the ellipticity condition for F is fulfilled.

To prove the second assertion, we follow the calculation in [Ove13Ove13, pp. 72-73]. The goal is to

apply the area formula [EG92EG92, Section 3.3.2, Theorem 1] to the denominator in (2.1.62.1.6). Fix q ∈ Rn

and σ ∈ GCm(Rn) and suppose σ = w1 ∧ w2 ∧ · · · ∧ wm where w1, w2, · · · , wm ∈ Rn are linearly

independent.

We will prove

εm = ‖σ‖∧m(Rn)H
m ({v ∈ Rm | |vαwα| ≤ 1}) . (3.3.4)

wherewith it follows that

a|·|m(q, σ) = ‖σ‖∧m(Rn).

As mentioned in the beginning of the present section, we recall from Corollary 1.1.131.1.13 that the spaces(∧m
(Rn), ‖·‖∧m(Rn)

)
and

(
RN , | · |

)
are isometrically isomorph. So

‖σ‖∧m(Rn) = |σ|
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where we use the same symbol σ for an element of GCm(Rn) ⊂
∧m

(Rn) and of GCm(Rn) ⊂ RN on

the left- and right-hand side respectively. Combining this with the above, the assertion holds true.

To prove (3.3.43.3.4) define the map f : Rm → Rn, v 7→ vαwα. This is an injective linear mapping with

im (f) = span {w1, w2, . . . , wm} ⊂ Rn. Note that the Jacobian matrix of f is

Df(v) :=


∂f1

∂v1 · · · ∂f1

∂vm

...
. . .

...
∂fn

∂v1 · · · ∂fn

∂vm


=
(
w1|w2| · · · |wm

)
∈ Rn×m

and the Jacobian determinant of f is

Jf(v) :=
√

det (Df(v)TDf(v))

=
√

det
(
〈wα, wβ〉Rn

)
α,β=1,...,m

= ‖w1 ∧ w2 ∧ · · · ∧ wm‖∧m(Rn) = ‖σ‖∧m(Rn).

Define the two sets

A := {v ∈ Rm | |vαwα| ≤ 1} ⊂ Rm

Ω := Bn1 (0) ∩ span {w1, w2, . . . , wm} ⊂ Rn

wherein Bn1 (0) ⊂ Rn denotes the n-dimensional Euclidean unit ball. As a first step we will show

f(A) = Ω. Let y ∈ f(A), then y = vαwα ∈ span {w1, w2, . . . , wm} and |vαwα| = |y| ≤ 1. Therefore,

y ∈ Ω. Conversely, suppose y ∈ Ω. Then y = vαwα for some v ∈ Rm and |y| = |vαwα| ≤ 1. Hence,

y ∈ f(A). In a next step, we show

H0
(
A ∩ f−1({·})

)
= χΩ(·).

If y /∈ im (f) = span {w1, w2, . . . , wm} then f−1({y}) = ∅ and A ∩ f−1({y}) = ∅. Therefore,

H0
(
A ∩ f−1({y})

)
= 0 and χΩ(y) = 0 because Ω ⊂ im (f).

If y ∈ im (f)∩ f(A) = span {w1, w2, . . . , wm} ∩Ω then the injectivity of f implies that the cardinality

of f−1({y}) = A ∩ f−1({y}) is 1. Therefore, H0(A ∩ f−1({y})) = 1 = χΩ(y). If y /∈ Ω but still

y ∈ span {w1, w2, . . . , wm} then A ∩ f−1({y}) = ∅ and consequently, H0(A ∩ f−1({y})) = 0 = χΩ(y).
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Using the area formula, we get

‖σ‖∧m(Rn)H
m ({v ∈ Rn | F (q, vαwα) ≤ 1})

= ‖σ‖∧m(Rn)H
m(A) =

∫
v∈A
‖σ‖∧m(Rn)dL

m(v)

=

∫
v∈A

Jf(v)dLm(v) =

∫
y∈Rn

H0(A ∩ f−1({y}))dHm(y)

=

∫
y∈Rn

χΩ(y)dHm(y) = Hm
(
Bn1 (0) ∩ span {w1, w2, . . . , wm}

)
= Hm

(
Bm1 (0)

)
= εm.

In the last equation we used that the n-dimensional Euclidean unit ball is centrally symmetric. This

proves (3.3.43.3.4). �

Now we can compare the value of the Busemann–Hausdorff area integrand for two different Finsler

metrics.

Lemma 3.3.4 ([OvdM14OvdM14, Lemma 2.4, p. 286])

Suppose F1, F2 are two Finsler metrics on Rn which are both strictly positive on Rn × (Rn \ {0}). If

for q ∈ Rn there exist numbers 0 < c1(q) ≤ c2(q) with

c1(q)F1(q, v) ≤ F2(q, v) ≤ c2(q)F1(q, v) for all v ∈ Rn,

then

m1(q)aF1
m (q, σ) ≤ aF2

m (q, σ) ≤ c2(q)aF1
m (q, σ) for all σ ∈ GCm(Rn), (3.3.5)

where mi(q) := cmi (q) for i = 1, 2.

Proof: We use Theorem 3.3.23.3.2 to get for σ = w1 ∧ w2 ∧ · · · ∧ wm ∈ GCm(Rn)

m1(q)aF1
m (q, w1 ∧ w2 ∧ · · · ∧ wm) = cm1 (q)

(
1

Hm−1(Sm−1)

∫
Sm−1

1

(F1(q, θαwα))
m dS(θ)

)−1

=

(
1

Hm−1(Sm−1)

∫
Sm−1

1

(c1(q)F1(q, θαwα))
m dS(θ)

)−1

≤
(

1

Hm−1(Sm−1)

∫
Sm−1

1

(F2(q, θαwα))
m dS(θ)

)−1

= aF2
m (q, w1 ∧ w2 ∧ · · · ∧ wm).
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The second inequality follows similarly. �

Finally, we combine the preceding results to find the positive definiteness of aFm.

Theorem 3.3.5 (Positive definiteness of aF
m, [OvdM14OvdM14, Corollary 2.5, p. 287])

Let F be a Finsler metric on Rn with

0 < c1 := inf
Rn×Sn−1

F (·, ·) ≤ sup
Rn×Sn−1

F (·, ·) = ‖F‖L∞(Rn×Sn−1) =: c2 <∞. (3.3.6)

Then

m1|σ| ≤ aFm(q, σ) ≤ m2|σ| for all (q, σ) ∈ Rn ×GCm(Rn), (3.3.7)

where mi := cmi for i = 1, 2, that is, (DD) holds true.

Proof: Through the positive homogeneity of F in its second argument, we see from (3.3.63.3.6) that

c1|v| ≤ |v|F
(
q,

v

|v|

)
= F (q, v) ≤ c2|v|

for all (q, v) ∈ Rn × Rn. For q ∈ Rn set ci(q) := ci for i = 1, 2. The functions F1(q, v) := |v| and

F2(q, v) := F (q, v) both are Finsler metrics on Rn which are strictly positive on Rn × (Rn \ {0}). Due

to Lemma 3.3.33.3.3 we find in addition that

a|·|m(q, σ) = |σ| for all (q, σ) ∈ Rn ×GCm(Rn),

where | · | on the left and right-hand side means the Euclidean norm on Rn and RN respectively.

Therefore, we can apply Lemma 3.3.43.3.4 to F1 and F2 and obtain (3.3.73.3.7) from (3.3.53.3.5). �

We conclude this chapter and the thesis with the proof of the Plateau problem in reversible Finsler

space.

Proof of Theorem 3.1.13.1.1: In Sections 3.3.13.3.1, 3.3.23.3.2 and 3.3.33.3.3 we saw that the extended two-dimensional

Busemann–Hausdorff area integrand aF2 : Rn × RN → R is a positive definite, semi-elliptic Cartan

integrand. Recall that the Busemann–Hausdorff area functional areaFB(·) in (2.1.72.1.7) is given by

areaFΩ(X) =

∫
p∈Ω

aFm

(
X(p), dXp

(
∂

∂u1

∣∣∣∣
p

)
∧ · · · ∧ dXp

(
∂

∂um

∣∣∣∣
p

))
du1 ∧ · · · ∧ dum.

Thus, areaFB(·) is the Cartan functional corresponding to I = aF2 . Therefore, we can apply The-
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orem 3.2.13.2.1 to the present situation which yields the stated result. �
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Conclusion and prospects

In this thesis we solved the Plateau problem in Finsler space in arbitrary codimension for a reversible

Finsler metric. We observed in Chapter 33 that the proof technique used in [OvdM14OvdM14] for the

codimension one case can be applied to solve the area minimisation problem in higher codimension.

Essentially, only the convexity of the two-dimensional Busemann–Hausdorff area density, established

in [BI12BI12], was needed. It was especially important that the underlying Finsler metric is reversible,

since otherwise all the arguments involving symmetric polygons in Chapter 22 do not hold.

Overath and von der Mosel, however, did not restrict themselves to reversible Finsler metrics. They

considered the so-called m-harmonic symmetrisation Fsym(x, y) = 2
1
m (F (x, y)−m + F (x,−y)−m)

− 1
m

of a Finsler metric F . Note that Fsym is always reversible and coincides with F , if the original Finsler

metric is reversible. In [OvdM14OvdM14] as a general assumption only such Finsler metrics are considered

whose m-harmonic symmetrisation is also a Finsler metric. Their idea is to apply the convexity result

to the reversible m-harmonic symmetrisation and use a result comparing the corresponding Finsler

areas. In fact, Overath and von der Mosel showed that the Busemann–Hausdorff area functionals

corresponding to F and Fsym coincide (see [OvdM14OvdM14, Theorem 1.1 + Lemma 2.3, p. 276+285]) – but

their proof is restricted to codimension one.

Further analysis is needed to see if a similar result holds true in higher codimension to fully generalise

Overath and von der Mosel’s work. It remains to be investigated if their results on higher regularity

of solutions (see [OvdM14OvdM14, Theorem 1.4, p. 281]) generalise straightforwardly to higher codimension.
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