

The Plateau problem for the Busemann–Hausdorff area in arbitrary codimension

Research goal

The classical Plateau problem asks the following questions: Given a simple closed curve $\Gamma \subset \mathbb{R}^3$, is there an embedded or immersed surface *M* such that $\partial M = \Gamma$ which has least area among all surfaces with the same boundary? How regular is this surface?

The objective is to answer these questions for a weighted area functional (originating in Finsler geometry) and in arbitrary codimension. This generalises the codimension one results in [2].

Background

- A *Finsler metric* on a smooth manifold N is a function $F: TN \to [0, \infty)$ s.t.:
- (F1) *Regularity*: $F \in C^{k}(TN \setminus 0) \cap C^{0}(TN), k \in \{2, 3, ..., +\infty\}.$
- (F2) *Positive homogeneity*: F(q, tv) = tF(q, v) for all $t > 0, (q, v) \in TN$.
- (F3) *Ellipticity*: The matrix $g_{ij}^F(q, v) := \left(\frac{1}{2}F^2\right)_{v^i v^j}(q, v)$ is positive definite for any $(q, v) \in TN \setminus 0$.
- A Finsler metric is *reversible* if F(q, v) = F(q, -v) for all $(q, v) \in TN$.
- A C^k -immersion $f: M^m \to (N^n, F)$ induces a *pull-back Finsler metric* $f^{\#}F$ on *M* via $(f^{\#}F)(p, v) := F(f(p), df_p(v))$ for $(p, v) \in TM$.
- Let $g \in \Sigma^2(T'M)$ be a fixed auxiliary Riemannian metric on the domain manifold *M*. Then the **Busemann–Hausdorff area** of $(M, f^{\#}F)$ is defined as

$$\mathcal{A}_F(f) = \int_M \sigma_{f^{\#}F,g} \,\mu_g$$

where μ_g is the Riemannian density induced by g and $\sigma_{F,g}: M \to \mathbb{R}$ is the function defined by

$$\sigma_{f^{\#}F,g}(p) = \frac{\mu_{g|p}\left(B_{1}^{g,p}(0)\right)}{\mu_{g|p}\left(B_{1}^{f^{\#}F,p}(0)\right)}.$$

• The *m*-harmonic symmetrisation $F_{(m)}$ is defined as

$$F_{(m)}(q,v) := 2^{\frac{1}{m}} \left((F(q,v))^{-m} + (F(q,-v))^{-m} \right)^{-\frac{1}{m}}$$

for $(q, v) \in TN \setminus 0$. A reversible Finsler metric *F* coincides with its *m*-harmonic symmetrisation. However, in general, $F_{(m)}$ is not a Finsler metric, in particular, (F3) need not be fulfilled. Therefore, we make the following *General* Assumption (GA).

Let F be a Finsler metric on N such that its m-harmonic symmetrisation $F_{(m)}$ is also a Finsler metric on N.

• For a given closed Jordan curve $\Gamma \subset \mathbb{R}^n$ denote by $C(\Gamma)$ the class of competing admissible disc-type surfaces. A map $f: B = B_1(0) \subset \mathbb{R}^2 \to \mathbb{R}^n$ belongs to $C(\Gamma)$ if $f|_{\partial B}$ is a continuous, weakly monotonic parametrisation of Γ .

 $C(\mathbf{I})$ In addition, the minimiser f is Euclidean-conformally parametrised on *B* (w.r.t. auxiliary metric *g*), i.e. for some smooth function φ : Furthermore, the minimiser f has the following regularity property,

This example illustrates that minimisers of anisotropic energy functionals such as \mathcal{A}_F might develop "smooth ridges". In principle, the anisotropy of the *F*unit ball favours some directions over others for variations of the surface.

Sven Pistre, Heiko von der Mosel

Plateau problem for Finsler area – Existence

Theorem ([1, Theorem 1.1])

Let *F* be a Finsler metric on $N = \mathbb{R}^n$ which satisfies (GA) and fulfils

$$0 < c_F |v|_{\mathbb{R}^n} \le F(p, v) \le C_F |v|_{\mathbb{R}^n} < \infty.$$

For any given rectifiable Jordan curve $\Gamma \subset \mathbb{R}^n$ there exists a surface $f \in C(\Gamma)$, s.t.

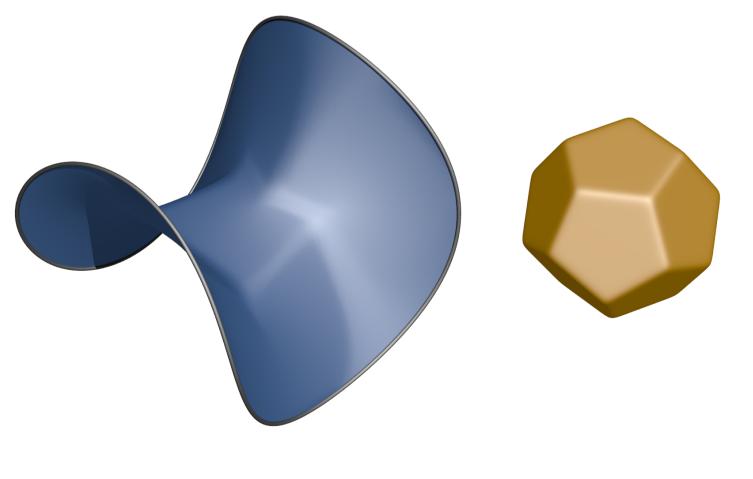
$$\mathcal{A}_F(f) = \inf_{C(\Gamma)} \mathcal{A}_F(\cdot).$$

$$f^{\#}\langle \cdot, \cdot \rangle_{\mathbb{R}^n} = \varphi g(\cdot, \cdot) \quad \mathcal{H}^2 \text{- a.e. on } B.$$

$$f \in C^{0}(\overline{B}; \mathbb{R}^{n}) \cap C^{0,\alpha}(B; \mathbb{R}^{n}) \cap W^{1,q}(B, \mathbb{R}^{n})$$

for $\alpha := \left(\frac{c_F}{C_F}\right)^2 \in (0, 1]$ and some q > 2.

Numerical approximation of a minimising surface



Area minimising surface (left) for a Minkowski-Finsler metric whose unit ball is a smoothened icosahedron (right) – Courtesy of Henrik Schumacher

Idea of proof

• Rewrite the integrand of \mathcal{A}_F as a'_m

$$\mathcal{A}_F(f) =$$

- Show that the mapping a_m^F is

Plateau problem for Finsler area – Regularity

Theorem in codimension one ([2, Theorem 1.4])

that the Finsler metric satisfies

i.e. *F* and $|\cdot|_{\mathbb{R}^3}$ are comparable up to second order.

Literature

- European Journal of Mathematics (2017).
- ential Equations (1999).

$$: \bigwedge_{s}^{m} TN \to \mathbb{R}_{+}, (q, \sigma) \mapsto \frac{\mathcal{H}^{m}(B_{1}^{m}(0))}{\mathcal{H}^{m}\left(B_{1}^{F,q}(0) \cap \langle \sigma \rangle\right)}$$

where the set $\bigwedge_{s}^{m}(TN)$ denotes the bundle of simple tangent *m*-vectors, s.t.

$$\int_{M} a_{m}^{F} \left(f, df\left(\frac{\partial}{\partial u^{1}}\right) \wedge \cdots \wedge df\left(\frac{\partial}{\partial u^{m}}\right) \right) du^{1} \wedge \cdots \wedge du^{m}$$

(i) *positively 1-homogeneous* in its second component,

(ii) *continuous* as a function on $\mathbb{R}^n \times \mathbb{R}^{\binom{n}{m}}$ for $N = \mathbb{R}^n$.

(iii) *positive definite*, i.e. there exist $0 < M_1 \le M_2$ s.t. for $(q, \tau) \in \bigwedge_{s}^{m}(TN)$:

 $M_1 \| \tau \|_{g, \wedge^m(T_qN)} \le a_m^F(q, \tau) \le M_2 \| \tau \|_{g, \wedge^m(T_qN)}$

(iv) *convex* in its second component for m = 2 and reversible *F*.

• Use the existence and regularity theory developed by Hildebrandt and von der Mosel [3] for the *Cartan integrand* a_2^F if *F* is reversible.

• Using that $a_m^{F_{(m)}} = a_m^F$ conclude the proof also for irreversible *F*.

There is a universal constant $\delta \in (0, 1)$ such that any Euclideanconformally parametrised (w.r.t the auxiliary metric g) minimiser f of \mathcal{A}_F is of class $W^{2,2}_{loc}(B;\mathbb{R}^3) \cap C^{1,\mu}(B;\mathbb{R}^3)$ for some $\mu \in (0,1)$ provided

$$\sup_{p\in\mathbb{R}^3} \left\| \left\| \nabla^2_{\mathbb{S}^2} \left(F(p,\cdot) - |\cdot|_{\mathbb{R}^3} \right) \right\|_{\mathbb{R}^3} \right\|_{L^{\infty}(\mathbb{S}^2)} < \delta,$$

An extension of this result to arbitrary codimension is work in progress.

[1] S. Pistre and H. von der Mosel. The Plateau problem for the Busemann–Hausdorff area in arbitrary codimension.

[2] P. Overath, H. von der Mosel. Plateau's problem in Finsler 3-space. *Manuscripta Mathematica* (2014).

[3] S. Hildebrandt, H. von der Mosel. On two-dimensional parametric variational problems. Calculus of Variations and Partial Differ-

