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Research goal
The classical Plateau problem asks the following questions: Given a simple
closed curve Γ ⊂ R3, is there an embedded or immersed surface M such that
∂M = Γ which has least area among all surfaces with the same boundary?
How regular is this surface?
The objective is to answer these questions for a weighted area functional (ori-
ginating in Finsler geometry) and in arbitrary codimension. This generalises
the codimension one results in [2].

Background

• A Finsler metric on a smooth manifold N is a function F : T N → [0,∞) s.t.:

(F1) Regularity: F ∈ Ck(T N \ 0) ∩C0(T N), k ∈ {2, 3, . . . ,+∞}.
(F2) Positive homogeneity: F(q, tv) = tF(q, v) for all t > 0, (q, v) ∈ T N.
(F3) Ellipticity: The matrix gF

i j(q, v) :=
(

1
2F2

)
yiy j (q, v) is positive definite for

any (q, v) ∈ T N \ 0.

• A Finsler metric is reversible if F(q, v) = F(q,−v) for all (q, v) ∈ T N.

• A Ck-immersion f : Mm → (Nn, F) induces a pull-back Finsler metric f #F
on M via ( f #F)(p, v) := F( f (p), d fp(v)) for (p, v) ∈ T M.

• Let g ∈ Σ2(T ′M) be a fixed auxiliary Riemannian metric on the domain mani-
fold M. Then the Busemann–Hausdorff area of (M, f #F) is defined as

AF( f ) =

∫
M
σ f #F,g µg

where µg is the Riemannian density induced by g and σF,g : M → R is the
function defined by

σ f #F,g(p) =
µg|p

(
Bg,p

1 (0)
)

µg|p

(
B f #F,p

1 (0)
).

• The m-harmonic symmetrisation F(m) is defined as

F(m)(q, v) := 2
1
m
(
(F(q, v))−m + (F(q,−v))−m)− 1

m

for (q, v) ∈ T N\0. A reversible Finsler metric F coincides with its m-harmonic
symmetrisation. However, in general, F(m) is not a Finsler metric, in particu-
lar, (F3) need not be fulfilled. Therefore, we make the following General
Assumption (GA).

Let F be a Finsler metric on N such that its m-harmonic symmetrisation
F(m) is also a Finsler metric on N.

• For a given closed Jordan curve Γ ⊂ Rn denote by C(Γ) the class of competing
admissible disc-type surfaces. A map f : B = B1(0) ⊂ R2 → Rn belongs to
C(Γ) if f |∂B is a continuous, weakly monotonic parametrisation of Γ.

Plateau problem for Finsler area – Existence

Theorem ([1, Theorem 1.1])

Let F be a Finsler metric on N = Rn which satisfies (GA) and fulfils

0 < cF |v|Rn ≤ F(p, v) ≤ CF |v|Rn < ∞.

For any given rectifiable Jordan curve Γ ⊂ Rn there exists a surface
f ∈ C(Γ), s.t.

AF( f ) = inf
C(Γ)
AF(·).

In addition, the minimiser f is Euclidean-conformally parametrised on
B (w.r.t. auxiliary metric g), i.e. for some smooth function ϕ:

f #〈·, ·〉Rn = ϕg(·, ·) H2– a.e. on B.

Furthermore, the minimiser f has the following regularity property,

f ∈ C0(B;Rn) ∩C0,α(B;Rn) ∩W1,q(B,Rn)

for α :=
(

cF
CF

)2
∈ (0, 1] and some q > 2.

Numerical approximation of a minimising surface

This example illustrates that minimisers of anisotropic energy functionals such
as AF might develop “smooth ridges”. In principle, the anisotropy of the F-
unit ball favours some directions over others for variations of the surface.

Area minimising surface (left) for a Minkowski-Finsler metric whose unit ball

is a smoothened icosahedron (right) – Courtesy of Henrik Schumacher

Idea of proof

• Rewrite the integrand ofAF as

aF
m :

∧m

s
T N → R+, (q, σ) 7→

Hm(Bm
1 (0))

Hm
(

BF,q
1 (0)∩〈σ〉

),
where the set

∧m
s (T N) denotes the bundle of simple tangent m-vectors, s.t.

AF( f ) =

∫
M

aF
m

(
f , d f

( ∂
∂u1

)
∧ · · · ∧ d f

( ∂
∂um

))
du1 ∧ · · · ∧ dum.

• Show that the mapping aF
m is

(i) positively 1-homogeneous in its second component,
(ii) continuous as a function on Rn × R(n

m) for N = Rn.
(iii) positive definite, i.e. there exist 0 < M1 ≤ M2 s.t. for (q, τ) ∈

∧m
s (T N):

M1‖τ‖g,∧m(TqN) ≤ aF
m(q, τ) ≤ M2‖τ‖g,∧m(TqN)

(iv) convex in its second component for m = 2 and reversible F.

• Use the existence and regularity theory developed by Hildebrandt and von der
Mosel [3] for the Cartan integrand aF

2 if F is reversible.

• Using that a
F(m)
m = aF

m conclude the proof also for irreversible F.

Plateau problem for Finsler area – Regularity

Theorem in codimension one ([2, Theorem 1.4])

There is a universal constant δ ∈ (0, 1) such that any Euclidean-
conformally parametrised (w.r.t the auxiliary metric g) minimiser f of
AF is of class W2,2

loc (B;R3) ∩ C1,µ(B;R3) for some µ ∈ (0, 1) provided
that the Finsler metric satisfies

sup
p∈R3

∥∥∥∥ ∣∣∣∣∇2
S2

(
F(p, ·) − | · |R3

)∣∣∣∣
R3

∥∥∥∥
L∞(S2)

< δ,

i.e. F and | · |R3 are comparable up to second order.

An extension of this result to arbitrary codimension is work in progress.
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