
The Plateau problem for the Busemann–
Hausdorff area in arbitrary codimension

Sven Pistre

Introduction

In the classical Plateau problem one seeks minimal surfaces spanning a prescribed closed
boundary contour Γ⊂R3. This can be achieved, e.g. by minimising the Euclidean area functional
in a suitable class of parametric surfaces; see [4]. We investigate the Plateau problem in Rn

endowed with a Finsler structure and a particular notion of area.
Let N = Nn be a smooth n-dimensional manifold and TN its tangent bundle. A non-negative
function F : TN→ [0,∞) is a Finsler metric if the following three conditions are satisfied:

(F1) Regularity : F ∈Ck(TN \o)∩C0(TN), k ∈ N∪{+∞},k ≥ 2.

(F2) Positive homogeneity: F(q, tv) = tF(q,v) for all t > 0 and (q,v) ∈ TN.

(F3) Ellipticity: The matrix gF
i j(q,v) :=

(1
2F2
)

yiy j (q,v) is positive definite for any (q,v)∈ TN\o.

The pair (N,F) is a Finsler manifold. A Finsler metric is reversible if F(q,v) = F(q,−v) for all
(q,v) ∈ TN. Any Ck-immersion X : Mm→ (Nn,F) for 0 < m ≤ n and k ≥ 2 induces a pull-back
Finsler metric X∗F on M via

X∗F(p,v) := F(X(p),dXp(v))

for (p,v)∈ TM. The m-dimensional Busemann–Hausdorff volume form on M (w.r.t. the Finsler
metric X∗F on M) is defined in local coordinates as dVX∗F(p) := σX∗F(p)du1 ∧ du2 ∧ ·· · ∧ dum

where

σX∗F(p) :=
H m(Bm

1 (0))

H m
({

v ∈ Rm : F
(
X(p),vαdXp

(
∂

∂uα

∣∣
p

))
< 1
}) . (1)

The Busemann–Hausdorff area of the immersion X is then given by areaF
M(X) :=

∫
M

dVX∗F .

Further, consider the m-harmonic symmetrisation F(m) defined as the reversible function

F(m)(q,v) := 2
1
m
(
(F(q,v))−m +(F(q,−v))−m)− 1

m

for (q,v) ∈ TN \ o. A reversible Finsler metric F coincides with its m-harmonic symmetrisation.
However, in general, F(m) is not a Finsler metric, in particular, (F3) need not be fulfilled. Therefore,
we make the following General Assumption.

Let F be a Finsler metric on an n-dimensional smooth manifold N such that its
m-harmonic symmetrisation F(m) is also a Finsler metric on N.

(GA)

Main result

In order to state the existence result for the Finsler-Plateau problem for two-dimensional surfaces
in any codimension we define for a given closed Jordan curve Γ ⊂ Rn the class of admissible
surfaces

C (Γ) :=
{

X ∈W 1,2(B,Rn) : X
∣∣
∂B is a continuous and weakly monotonic parametrisation of Γ

}
.

Theorem (Plateau problem for Busemann–Hausdorff area).
Let F be a Finsler metric on N = Rn which satisfies (GA) for m = 2 and assume in addition
that

0 < cF := inf
Rn×Sn−1

F(·, ·)≤ sup
Rn×Sn−1

F(·, ·) = ‖F‖L∞(Rn×Sn−1) =: CF < ∞. (DF)

Then for any given rectifiable Jordan curve Γ⊂ Rn there exists a surface X ∈ C (Γ), such that

areaF
B(X) = inf

C (Γ)
areaF

B(·).

In addition, the minimiser X is Euclidean conformally parametrised on B, i.e.∣∣∣∣ ∂X
∂u1

∣∣∣∣2 = ∣∣∣∣ ∂X
∂u2

∣∣∣∣2 and
〈

∂X
∂u1 ,

∂X
∂u2

〉
R2

= 0 H 2– a.e. on B. (CONF)

Furthermore, the minimiser X has the following regularity property,

X ∈C0 (B,Rn)∩C0,α (B,Rn)∩W 1,q (B,Rn) (R)

for α :=
( cF

CF

)2 ∈ (0,1] and some q > 2.

The existence and regularity theory for the Plateau problem for a general class of Cartan func-
tionals was developed by Hildebrandt and von der Mosel in a series of papers, see e.g. [5, 6]. We
reformulate the Busemann–Hausdorff area functional and use the following general result to prove
the main theorem above.

Theorem (Plateau problem for Cartan integrands, [5]).
Suppose I ∈ C0

(
Rn×R(

n
2);R

)
is positively 1-homogeneous, convex in its second component

and satisfies (D) below. Then for any given rectifiable Jordan curve Γ ⊂ Rn there exists a
surface X ∈ C (Γ), s. t. I (X) = infC (Γ)I (·) where I (X) :=

∫
B I (X ,Xu1 ∧Xu2)du1∧du2.

In addition, the minimiser X satisfies condition (CONF) and fulfils property (R) for α := M1
M2
∈

(0,1] and some q > 2.

Idea of the proof

Rewrite the integrand (1) of the Busemann–Hausdorff area functional in terms of the mapping

aF
m :

⊔
q∈N

∧m

s
(TqN)→ R+,(q,w1∧w2∧·· ·∧wm) 7→

H m(Bm
1 (0))

H m ({v ∈ Rm : F (q,vαwα)< 1})
,

where the set
∧m

s (TqN) denotes the set of simple tangent m-vectors, s.t. the area functional takes
the form

areaF
M(X) =

∫
M

aF
m

(
X ,dX

(
∂

∂u1

)
∧·· ·∧dX

(
∂

∂um

))
du1∧·· ·∧dum.

We show that the mapping aF
m is

• positively (in fact, absolutely) 1-homogeneous in its second component,

• continuous as a function on Rn×R(
n
m) for N = Rn.

These properties identify aF
m as a Cartan integrand. All existence results for minimisers of Cartan

functionals require two additional conditions on the integrand.

• Firstly, aF
m needs to be positive definite, i.e. there exist 0 < M1 ≤M2 s.t.

M1‖τ‖g,
∧m(TqN) ≤ aF

m(q,τ)≤M2‖τ‖g,
∧m(TqN) for all (q,τ) ∈

∧m

s
(TN), (D)

where g is an arbitrary auxiliary Riemannian metric on M.

Due to Overath [7] we have that for any (q,w1∧ . . .∧wm) ∈
∧m

s (TN)

aF
m(q,w1∧w2∧·· ·∧wm) =

(
1

H m−1(Sm−1)

∫
Sm−1

1
(F(q,θ αwα))

m dH m−1(θ)

)−1

.

This can be used to transfer the L∞-bounds (DF) on F to condition (D) for aF
m by choosing Mi := cm

i
for i = 1,2. Additionally, this shows that

areaF
M(X) = area

F(m)

M (X). (2)

• Secondly, aF
m needs to be convex in its second component.

In codimension one and for reversible Finsler metrics, this is a classical result from convex analysis
by Busemann.
More recently, Burago and Ivanov [3] have shown for m = 2 and reversible F

• that there exists convex extension of aF
2 to the vector bundle

∧2 (TN) in any codimension,

which inherits the absolute homogeneity and continuity.
A different notion of volume introduced by Bernig [2] also contains this result as a special case.
Finally, we use the existence result for Cartan functionals to solve the Plateau problem for the
Busemann–Hausdorff area for reversible F and then use (2) to also show existence for irreversible
Finsler metrics F .

Area minimising surface w.r.t. a Finsler metric whose unit ball is a smoothened icosahedron.
(Courtesy of Henrik Schumacher)
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